This paper derives a set of easy-to-use tools designed to simplify calculations with birdtrack operators comprised of symmetrizers and antisymmetrizers. In particular, we present cancellation rules allowing one to shorten the birdtrack expressions of operators and propagation rules identifying the circumstances under which it is possible to propagate symmetrizers past antisymmetrizers and vice versa. We exhibit the power of these simplification rules by means of a short example in which we apply the tools derived in this paper on a typical operator that can be encountered in the representation theory of 𝖲𝖴(N) over the product space Vm. These rules form the basis for the construction of compact Hermitian Young projection operators and their transition operators addressed in companion papers [J. Alcock-Zeilinger and H. Weigert, “Compact Hermitian Young projection operators,” e-print arXiv:1610.10088 [math-ph] and J. Alcock-Zeilinger and H. Weigert, “Transition operators,” e-print arXiv:1610.08802 [math-ph]].

1.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
Compact Hermitian Young projection operators
,”
J. Math. Phys.
58
,
051702
(
2017
).
2.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
Transition operators
,”
J. Math. Phys.
58
,
051703
(
2017
).
3.
R.
Penrose
, “
Applications of negative dimension tensors
,” in
Combinatorical Mathematics and its Applications
, edited by
D.
Welsh
(
Academic Press
,
USA, New York
,
1971
), pp.
221
244
.
4.
R.
Penrose
, “
Angular momentum: An approach to combinatorical space-time
,” in
Quantum Theory and Beyond
, edited by
T.
Bastin
(
Cambridge University Press
,
UK, Cambridge
,
1971
).
5.
R.
Penrose
and
M. A. H.
MacCallum
, “
Twistor theory: An Approach to the quantization of fields and space-time
,”
Phys. Rep.
6
,
241
316
(
1972
).
6.
P.
Cvitanović
,
Group Theory: Birdtracks, Lie’s and Exceptional Groups
(
University Press
,
USA, Princeton
,
2008
), http://birdtracks.eu.
7.
A.
Young
, “
On quantitative substitutional analysis - III
,”
Proc. London Math. Soc.
s2–28,
255
292
(
1928
).
8.
C.
Marquet
and
H.
Weigert
, “
New observables to test the color glass condensate beyond the large-Nc limit
,”
Nucl. Phys. A
843
,
68
97
(
2010
); e-print arXiv:1003.0813 [hep-ph].
9.
H.
Weigert
, “
Nonglobal jet evolution at finite Nc
,”
Nucl. Phys. B
685
,
321
350
(
2004
); e-print arXiv:hep-ph/0312050 [hep-ph].
10.
G.
Falcioni
,
E.
Gardi
,
M.
Harley
,
L.
Magnea
, and
C. D.
White
, “
Multiple gluon exchange webs
,”
J. High Energy Phys.
2014
,
10
; e-print arXiv:1407.3477 [hep-ph].
11.
C. J.
Bomhof
,
P. J.
Mulders
, and
F.
Pijlman
, “
The Construction of gauge-links in arbitrary hard processes
,”
Eur. Phys. J. C
47
,
147
162
(
2006
); e-print arXiv:hep-ph/0601171 [hep-ph].
12.
W.
Fulton
and
J.
Harris
,
Representation Theory - A First Course
(
Springer
,
USA
,
2004
).
13.
W. K.
Tung
,
Group Theory in Physics
(
World Scientific
,
Singapore
,
1985
).
14.
J.
Alcock-Zeilinger
and
H.
Weigert
, “
A construction algorithm for the singlets of 𝖲𝖴 (N) and what they tell us about Wilson line correlators
” (unpublished).
15.
S.
Keppeler
and
M.
Sjödahl
, “
Hermitian Young operators
,”
J. Math. Phys.
55
,
021702
(
2014
); e-print arXiv:1307.6147 [math-ph].
16.
T.
Lappi
,
A.
Ramnath
,
K.
Rummukainen
, and
H.
Weigert
, “
JIMWLK evolution of the odderon
,”
Phys. Rev. D
94
,
054014
(
2016
); e-print arXiv:1606.00551 [hep-ph].
17.
W.
Fulton
,
Young Tableaux
(
University Press
,
UK, Cambridge
,
1997
).
18.
B.
Sagan
,
The Symmetric Group - Representations, Combinatorical Algorithms, and Symmetric Functions
, 2nd ed. (
Springer
,
USA, New York
,
2000
).
19.
S.
Chowla
,
I. N.
Herstein
, and
W. K.
Moore
, “
On recursions connected with the symmetric groups I
,”
Can. J. Math.
3
,
328
334
(
1951
).
20.
D.
Littlewood
,
The Theory of Group Characters and Matrix Representations of Groups
, 2nd ed. (
Oxford University Press
,
UK, Clarendon
,
1950
).
21.
H.
Weyl
,
The Classical Groups: Their Invariants and Representations
, 2nd ed. (
University Press
,
Princeton, USA
,
1946
).
22.
S.
Keppeler
and
M.
Sjödahl
, “
Orthogonal multiplet bases in SU(Nc) color space
,”
J. High Energy Phys.
2012
,
124
; e-print arXiv:1207.0609 [hep-ph].
You do not currently have access to this content.