In Paper I [Singla, K. and Gupta, R. K., J. Math. Phys. 57, 101504 (2016)], Lie symmetry method is developed for time fractional systems of partial differential equations. In this article, the Lie symmetry approach is proposed for space-time fractional systems of partial differential equations and applied to study some well-known physically significant space-time fractional nonlinear systems successfully.

1.
Atangana
,
A.
and
Secer
,
A.
, “
The time-fractional coupled-Korteweg-de-Vries equations
,”
Abstr. Appl. Anal.
2013
,
947986
.
2.
Bakkyaraj
,
T.
and
Sahadevan
,
R.
, “
On solutions of two coupled fractional time derivative Hirota equations
,”
Nonlinear Dyn.
77
,
1309
1322
(
2014
).
3.
Buckwar
,
E.
and
Luchko
,
Y.
, “
Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations
,”
J. Math. Anal. Appl.
227
,
81
97
(
1998
).
4.
Bluman
,
G. W.
and
Anco
,
S. C.
,
Symmetry and Integration Methods for Differential Equations
(
Springer-Verlag
,
New York
,
2002
).
5.
Chen
,
Y.
and
An
,
H. L.
, “
Numerical solutions of coupled Burgers equations with time and space-fractional derivatives
,”
Appl. Math. Comput.
200
,
87
95
(
2008
).
6.
Gepreel
,
K. A.
and
Al-Thobaiti
,
A. A.
, “
Exact solutions of nonlinear partial fractional differential equations using fractional sub-equation method
,”
Indian J. Phys.
88
,
293
300
(
2014
).
7.
Ghany
,
H. A.
,
Okb El Bab
,
A. S.
,
Zabel
,
A. M.
, and
Hyder
,
A. A.
, “
The fractional coupled KdV equations: Exact solutions and white noise functional approach
,”
Chin. Phys. B
22
,
080501
(
2013
).
8.
Huang
,
Q.
and
Zhdanov
,
R.
, “
Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative
,”
Physica A
409
,
110
118
(
2014
).
9.
Jefferson
,
G. F.
and
Carminati
,
J.
, “
FracSym: Automated symbolic computation of Lie symmetries of fractional differential equations
,”
Comput. Phys. Commun.
185
,
430
441
(
2014
).
10.
Kiryakova
,
V.
,
Generalized Fractional Calculus and Applications
, Pitman Research Notes in Mathematics Series (
Longman Scientific & Technical, Longman Group
,
UK
,
1994
).
11.
Leo
,
R. A.
,
Sicuro
,
G.
, and
Tempesta
,
P.
, “
A foundational approach to the Lie theory for fractional order partial differential equations
,”
Fract. Calc. Appl. Anal.
20
,
212
231
(
2017
).
12.
Luchko
,
Y.
and
Gorenflo
,
R.
, “
Scale-invariant solutions of a partial differential equation of fractional order
,”
Frac. Calc. Appl. Anal.
3
,
63
78
(
1998
).
13.
Miller
,
K. S.
and
Ross
,
B.
,
An Introduction to Fractional Calculus and Fractional Differential Equations
(
Wiley
,
New York
,
1993
).
14.
Olver
,
P. J.
,
Applications of Lie Groups to Differential Equations
, Graduate Texts in Mathematics, 2nd ed. (
Springer-Verlag
,
New York
,
1993
), Vol. 107.
15.
Pandir
,
Y.
and
Yildirim
,
A.
, “
New exact solutions of the space-time fractional potential Kadomtsev-Petviashvili equation
,”
AIP Conf. Proc.
1648
,
370016
(
2015
).
16.
Podlubny
,
I.
,
Fractional Differential Equations
(
Academic Press
,
San Diego
,
1999
).
17.
Prakash
,
A.
,
Kumar
,
M.
, and
Sharma
,
K. K.
, “
Numerical method for solving fractional coupled Burgers equations
,”
Appl. Math. Comput.
260
,
314
320
(
2015
).
18.
Rodrigues
,
M. M.
, “
Study of solutions of a nonlinear fractional partial differential equation
,” in
Proceedings of the World Congress on Engineering
(
WCE
,
London, UK
,
2011
), Vol. I, p.
5
.
19.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
Fractional Integrals and Derivatives, Theory and Applications
(
Gordan and Breach Science Publishers
,
Langhorne, Pennsylvania
,
1993
).
20.
Singla
,
K.
and
Gupta
,
R. K.
, “
On invariant analysis of some time fractional nonlinear systems of partial differential equations. I
,”
J. Math. Phys.
57
,
101504
(
2016
).
21.
Tarasov
,
V. E.
,
Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media
, Nonlinear Physical Science (
Higher Education Press, Beijing, and Springer-Verlag
,
Berlin, Heidelberg
,
2010
).
22.
Yang
,
X. J.
,
Baleanu
,
D.
, and
Srivastava
,
H. M.
,
Local Fractional Integral Transforms and Their Applications
(
Academic Press
,
London
,
2015
).
23.
Yang
,
X. J.
, “
Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems
,”
Therm. Sci.
326
(published online,
2016
).
24.
Yang
,
X. J.
,
Srivastava
,
H. M.
, and
Machado
,
T. J.
, “
A new fractional derivative without singular Kernel: Application to the modelling of the steady heat flow
,”
Therm. Sci.
20
,
753
756
(
2016
).
25.
Yildirim
,
A.
and
Koçak
,
H.
, “
Homotopy perturbation method for solving the space-time fractional advection-dispersion equation
,”
Adv. Water Resour.
32
,
1711
1716
(
2009
).
You do not currently have access to this content.