In this paper, the problem of the self-adjointness for the case of a quantum mini-superspace Hamiltonian retrieved from a Brans-Dicke action is investigated. Our matter content is presented in terms of a perfect fluid, onto which Schutz’s formalism will be applied. We use the von Neumann theorem and the similarity with the Laplacian operator in one of the variables to determine the cases where the Hamiltonian is self-adjoint and if it admits self-adjoint extensions. For the latter, we study which extension is physically more suitable.
REFERENCES
1.
B. S.
DeWitt
, Phys. Rev.
160
, 1113
(1967
).2.
C. W.
Misner
, Phys. Rev.
186
, 1319
(1969
)3.
A.
Ashtekar
and J.
Lewandowski
, Classical Quantum Gravity
21
, R53
(2004
).4.
C.
Rovelli
, Quantum Gravity
(Cambridge University Press
, Cambridge
, 2004
).5.
M. B.
Green
, J. H.
Schwarz
, and E.
Witten
, Superstring Theory
(Cambridge University Press
, Cambridge
, 1987
).6.
J.
Polchinski
, String Theory, Volumes 1 and 2
(Cambridge University Press
, Cambridge
, 1998
).7.
8.
K.
Kuchar
, “Time and interpretation of quantum gravity
,” in Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophyscis
(World Scientific
, Singapore
, 1992
).9.
C. J.
Isham
, “Canonical quantum gravity and the problem of time
,” in Lectures Presented at the NATO Advanced Study Institute on Recent Problems in Mathematical Physics
(Salamanca
, 1992
); arXiv:gr-qc/9210011.10.
M. J.
Gotay
and J.
Demaret
, Phys. Rev. D
28
, 2402
(1983
).11.
V. G.
Lapchinskii
and V. A.
Rubakov
, Theor. Math. Phys.
33
, 1076
(1977
).12.
F. G.
Alvarenga
and N. A.
Lemos
, Gen. Relativ. Gravitation
30
, 681
(1998
).13.
F. G.
Alvarenga
, J. C.
Fabris
, N. A.
Lemos
, and G. A.
Monerat
, Gen. Relativ. Gravitation
34
, 651
(2002
).14.
J.
Acacio de Barros
, N.
Pinto-Neto
, and M. A.
Sagioro-Leal
, Phys. Lett. A
241
, 229
(1998
).15.
B. F.
Schutz
, Phys. Rev. D
2
, 2762
(1970
)16.
H.
Everett
, Rev. Mod. Phys.
29
, 454
(1957
).17.
R.
Omnès
, The Interpretation of Quantum Mechanics
(Princeton University Press
, Princeton
, 1994
).18.
D.
Bohm
and B. J.
Hiley
, The Undivided Universe: An Ontological Interpretation of Quantum Theory
(Routledge
, London
, 1993
).19.
P. R.
Holland
, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics
(Cambridge University Press
, Cambridge
, 1993
).20.
N.
Pinto-Neto
and J. C.
Fabris
, Classical Quantum Gravity
30
, 143001
(2013
).21.
S.
Pal
and N.
Banerjee
, Phys. Rev. D
90
, 104001
(2014
).22.
S.
Pal
and N.
Banerjee
, Phys. Rev. D
91
, 044042
(2015
).23.
C. R.
Almeida
, A. B.
Batista
, J. C.
Fabris
, and P. R. L. V.
Moniz
, Gravitation Cosmol.
21
, 191
(2015
).24.
B.
Valiki
, Phys. Lett. B
718
, 34
(2012
).25.
M.
Reed
and B.
Simon
, Fourier Analysis, Self-Adjointness
, Methods of Modern Mathematical Physics (Academic Press, Inc.
, London
, 1975
), Vol. II.26.
W.
Bulla
and F.
Gesztesy
, “Deficiency indices and singular boundary conditions in quantum mechanics
,” J. Math. Phys.
26
, 2520
(1985
).27.
M.
Reed
and B.
Simon
, Functional Analysis
, Methods of Modern Mathematical Physics (Academic Press, Inc.
, London
, 1972
), Vol. I.28.
S.
Pal
and N.
Banerjee
, J. Math. Phys.
57
, 122502
(2016
).29.
C.
Chirenti
, J.
Skákala
, and A.
Saa
, “Quasinormal modes from a naked singularity
,” Relativity and Gravitation
, Springer Proceedings in Physics Vol. 157 (Springer
, 2014
), pp 339
–346
.30.
J. P.
Gazeau
, Acta Polytech.
56
, 173
–179
(2016
).31.
S.
Pal
, Phys. Rev. D
94
, 084023
(2016
).32.
J. C.
Fabris
, F. T.
Falciano
, J.
Marto
, N.
Pinto-Neto
, and P. R. L. V.
Moniz
, Braz. J. Phys.
42
, 475
(2012
).33.
A. M.
Essin
and D. J.
Griffiths
, Am. J. Phys.
74
, 109
(2006
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.