We look for three-dimensional vortex-solutions, which have finite energy and are stationary solutions, of Klein-Gordon-Maxwell-Proca type systems of equations. We prove the existence of three-dimensional cylindrically symmetric vortex-solutions having a least possible energy among all symmetric solutions. Moreover we show that, if the Proca mass disappears, then the solutions tend to a solution of the Klein-Gordon-Maxwell system.

1.
Azzollini
,
A.
,
Pisani
,
L.
, and
Pomponio
,
A.
, “
Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
141
,
449
463
(
2011
).
2.
Azzollini
,
A.
and
Pomponio
,
A.
, “
Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations
,”
Topol. Methods Nonlinear Anal.
35
,
33
42
(
2010
).
3.
Bellazzini
,
J.
,
Bonanno
,
C.
, and
Siciliano
,
G.
, “
Magneto-static vortices in two dimensional abelian gauge theories
,”
Mediterr. J. Math.
6
,
347
366
(
2009
).
4.
Benci
,
V.
and
Fortunato
,
D.
, “
Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations
,”
Rev. Math. Phys.
14
,
409
420
(
2002
).
5.
Benci
,
V.
and
Fortunato
,
D.
, “
Three-dimensional vortices in Abelian gauge theories
,”
Nonlinear Anal.
70
,
4402
4421
(
2009
).
6.
Benci
,
V.
and
Fortunato
,
D.
, “
Spinning Q-balls for the Klein-Gordon-Maxwell equations
,”
Commun. Math. Phys.
295
(
3
),
639
668
(
2010
).
7.
Benci
,
V.
and
Fortunato
,
D.
,
Variational Methods in Nonlinear Field Equations: Solitary Waves, Hylomorphic Solitons and Vortices
, Springer Monographs in Mathematics (
Springer
,
Cham
,
2014
).
8.
Bonheure
,
D.
,
d’Avenia
,
P.
, and
Pomponio
,
A.
, “
On the electrostatic Born-Infeld equation with extended charges
,”
Commun. Math. Phys.
346
,
877
(
2016
).
9.
Clapp
,
M.
,
Ghimenti
,
M.
, and
Micheletti
,
A. M.
, “
Semiclassical states for a static supercritical Klein-Gordon-Maxwell-Proca system on a closed Riemannian manifold
,”
Commun. Contemp. Math.
18
,
1550039
(
2016
).
10.
D’Aprile
,
T.
and
Mugnai
,
D.
, “
Non-existence results for the coupled Klein-Gordon-Maxwell equations
,”
Adv. Nonlinear Stud.
4
,
307
322
(
2004
).
11.
D’Aprile
,
T.
and
Mugnai
,
D.
, “
Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations
,”
Proc. R. Soc. Edinburgh, Sect. A: Math.
134
,
893
906
(
2004
).
12.
d’Avenia
,
P.
and
Pisani
,
L.
, “
Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations
,”
Electron. J. Differ. Equations
26
,
13
(
2002
).
13.
d’Avenia
,
P.
,
Pisani
,
L.
, and
Siciliano
,
G.
, “
Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems
,”
Nonlinear Anal.
71
,
e1985
e1995
(
2009
).
14.
d’Avenia
,
P.
,
Pisani
,
L.
, and
Siciliano
,
G.
, “
Klein-Gordon-Maxwell systems in a bounded domain
,”
Discrete Contin. Dyn. Syst.
26
,
135
149
(
2010
).
15.
Druet
,
O.
,
Hebey
,
E.
, and
Vétois
,
J.
, “
Static Klein–Gordon–Maxwell–Proca systems in 4-dimensional closed manifolds II
,”
J. Reine Angew. Math.
713
,
149
179
(
2016
).
16.
Felsager
,
B.
,
Geometry, Particles, and Fields
, Graduate Texts in Contemporary Physics (
Springer-Verlag
,
New York
,
1998
).
17.
Ghimenti
,
M.
,
Micheletti
,
A. M.
, and
Pistoia
,
A.
, “
The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds
,”
Discrete Contin. Dyn. Syst.
34
,
2535
2560
(
2014
).
18.
Goldhaber
,
A. S.
and
Nieto
,
M. M.
, “
Photon and graviton mass limits
,”
Rev. Mod. Phys.
82
,
939
979
(
2010
).
19.
Hebey
,
E.
and
Truong
,
T. T.
, “
Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds
,”
J. Reine Angew. Math.
2012
(
667
),
221
248
.
20.
Hebey
,
E.
and
Wei
,
J.
, “
Resonant states for the static Klein-Gordon-Maxwell-Proca system
,”
Math. Res. Lett.
19
,
953
967
(
2012
).
21.
Lions
,
P.-L.
, “
The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
,”
Ann. Inst. Henri Poincare Non Linear Anal.
1
,
223
283
(
1984
).
22.
Mugnai
,
D.
and
Rinaldi
,
M.
, “
Spinning Q-balls in abelian gauge theories with positive potentials: Existence and non existence
,”
Calculus Var. Partial Differ. Equations
53
,
1
27
(
2015
).
23.
Naber
,
G. L.
,
Topology, Geometry, and Gauge Fields: Foundations
, Texts in Applied Mathematics Vol. 25 (
Springer-Verlag
,
New York
,
2011
).
24.
Naber
,
G. L.
,
Topology, Geometry, and Gauge Fields: Interactions
, Texts in Applied Mathematics Vol. 141 (
Springer-Verlag
,
New York
,
2011
).
25.
Proca
,
A.
, “
Sur la théorie du positron
,”
C. R. Acad. Sci. Paris
202
,
1366
1368
(
1936
).
26.
Proca
,
A.
, “
Sur la théorie ondulatoire des électrons positifs et négatifs
,”
J. Phys. Radium
7
,
347
353
(
1936
).
27.
Proca
,
A.
, “
Sur les photons et les particules charge pure
,”
C. R. Acad. Sci. Paris
203
,
709
711
(
1936
).
28.
Proca
,
A.
, “
Particles libres: Photons et particules ‘charge pure’
,”
J. Phys. Radium
8
,
23
28
(
1937
).
29.
Proca
,
A.
, “
Théorie non relativiste des particles a spin entier
,”
J. Phys. Radium
9
,
61
66
(
1938
).
30.
Szulkin
,
A.
and
Weth
,
T.
, “
Ground state solutions for some indefinite variational problems
,”
J. Funct. Anal.
257
,
3802
3822
(
2009
).
31.
Wang
,
F.
, “
Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system
,”
Nonlinear Anal.
74
,
4796
4803
(
2011
).
32.
Willem
,
M.
,
Minimax Theorems
(
Birkhäuser Verlag
,
1996
).
33.
Yu
,
Y.
, “
Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory
,”
Ann. Inst. Henri Poincare Non Linear Anal.
27
,
351
376
(
2010
).
You do not currently have access to this content.