We look for three-dimensional vortex-solutions, which have finite energy and are stationary solutions, of Klein-Gordon-Maxwell-Proca type systems of equations. We prove the existence of three-dimensional cylindrically symmetric vortex-solutions having a least possible energy among all symmetric solutions. Moreover we show that, if the Proca mass disappears, then the solutions tend to a solution of the Klein-Gordon-Maxwell system.
REFERENCES
1.
Azzollini
, A.
, Pisani
, L.
, and Pomponio
, A.
, “Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system
,” Proc. R. Soc. Edinburgh, Sect. A: Math.
141
, 449
–463
(2011
).2.
Azzollini
, A.
and Pomponio
, A.
, “Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations
,” Topol. Methods Nonlinear Anal.
35
, 33
–42
(2010
).3.
Bellazzini
, J.
, Bonanno
, C.
, and Siciliano
, G.
, “Magneto-static vortices in two dimensional abelian gauge theories
,” Mediterr. J. Math.
6
, 347
–366
(2009
).4.
Benci
, V.
and Fortunato
, D.
, “Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations
,” Rev. Math. Phys.
14
, 409
–420
(2002
).5.
Benci
, V.
and Fortunato
, D.
, “Three-dimensional vortices in Abelian gauge theories
,” Nonlinear Anal.
70
, 4402
–4421
(2009
).6.
Benci
, V.
and Fortunato
, D.
, “Spinning Q-balls for the Klein-Gordon-Maxwell equations
,” Commun. Math. Phys.
295
(3
), 639
–668
(2010
).7.
Benci
, V.
and Fortunato
, D.
, Variational Methods in Nonlinear Field Equations: Solitary Waves, Hylomorphic Solitons and Vortices
, Springer Monographs in Mathematics (Springer
, Cham
, 2014
).8.
Bonheure
, D.
, d’Avenia
, P.
, and Pomponio
, A.
, “On the electrostatic Born-Infeld equation with extended charges
,” Commun. Math. Phys.
346
, 877
(2016
).9.
Clapp
, M.
, Ghimenti
, M.
, and Micheletti
, A. M.
, “Semiclassical states for a static supercritical Klein-Gordon-Maxwell-Proca system on a closed Riemannian manifold
,” Commun. Contemp. Math.
18
, 1550039
(2016
).10.
D’Aprile
, T.
and Mugnai
, D.
, “Non-existence results for the coupled Klein-Gordon-Maxwell equations
,” Adv. Nonlinear Stud.
4
, 307
–322
(2004
).11.
D’Aprile
, T.
and Mugnai
, D.
, “Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations
,” Proc. R. Soc. Edinburgh, Sect. A: Math.
134
, 893
–906
(2004
).12.
d’Avenia
, P.
and Pisani
, L.
, “Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations
,” Electron. J. Differ. Equations
26
, 13
(2002
).13.
d’Avenia
, P.
, Pisani
, L.
, and Siciliano
, G.
, “Dirichlet and Neumann problems for Klein-Gordon-Maxwell systems
,” Nonlinear Anal.
71
, e1985
–e1995
(2009
).14.
d’Avenia
, P.
, Pisani
, L.
, and Siciliano
, G.
, “Klein-Gordon-Maxwell systems in a bounded domain
,” Discrete Contin. Dyn. Syst.
26
, 135
–149
(2010
).15.
Druet
, O.
, Hebey
, E.
, and Vétois
, J.
, “Static Klein–Gordon–Maxwell–Proca systems in 4-dimensional closed manifolds II
,” J. Reine Angew. Math.
713
, 149
–179
(2016
).16.
Felsager
, B.
, Geometry, Particles, and Fields
, Graduate Texts in Contemporary Physics (Springer-Verlag
, New York
, 1998
).17.
Ghimenti
, M.
, Micheletti
, A. M.
, and Pistoia
, A.
, “The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds
,” Discrete Contin. Dyn. Syst.
34
, 2535
–2560
(2014
).18.
Goldhaber
, A. S.
and Nieto
, M. M.
, “Photon and graviton mass limits
,” Rev. Mod. Phys.
82
, 939
–979
(2010
).19.
Hebey
, E.
and Truong
, T. T.
, “Static Klein-Gordon-Maxwell-Proca systems in 4-dimensional closed manifolds
,” J. Reine Angew. Math.
2012
(667
), 221
–248
.20.
Hebey
, E.
and Wei
, J.
, “Resonant states for the static Klein-Gordon-Maxwell-Proca system
,” Math. Res. Lett.
19
, 953
–967
(2012
).21.
Lions
, P.-L.
, “The concentration-compactness principle in the calculus of variations. The locally compact case, part 2
,” Ann. Inst. Henri Poincare Non Linear Anal.
1
, 223
–283
(1984
).22.
Mugnai
, D.
and Rinaldi
, M.
, “Spinning Q-balls in abelian gauge theories with positive potentials: Existence and non existence
,” Calculus Var. Partial Differ. Equations
53
, 1
–27
(2015
).23.
Naber
, G. L.
, Topology, Geometry, and Gauge Fields: Foundations
, Texts in Applied Mathematics Vol. 25 (Springer-Verlag
, New York
, 2011
).24.
Naber
, G. L.
, Topology, Geometry, and Gauge Fields: Interactions
, Texts in Applied Mathematics Vol. 141 (Springer-Verlag
, New York
, 2011
).25.
Proca
, A.
, “Sur la théorie du positron
,” C. R. Acad. Sci. Paris
202
, 1366
–1368
(1936
).26.
Proca
, A.
, “Sur la théorie ondulatoire des électrons positifs et négatifs
,” J. Phys. Radium
7
, 347
–353
(1936
).27.
Proca
, A.
, “Sur les photons et les particules charge pure
,” C. R. Acad. Sci. Paris
203
, 709
–711
(1936
).28.
Proca
, A.
, “Particles libres: Photons et particules ‘charge pure’
,” J. Phys. Radium
8
, 23
–28
(1937
).29.
Proca
, A.
, “Théorie non relativiste des particles a spin entier
,” J. Phys. Radium
9
, 61
–66
(1938
).30.
Szulkin
, A.
and Weth
, T.
, “Ground state solutions for some indefinite variational problems
,” J. Funct. Anal.
257
, 3802
–3822
(2009
).31.
Wang
, F.
, “Ground-state solutions for the electrostatic nonlinear Klein-Gordon-Maxwell system
,” Nonlinear Anal.
74
, 4796
–4803
(2011
).32.
33.
Yu
, Y.
, “Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory
,” Ann. Inst. Henri Poincare Non Linear Anal.
27
, 351
–376
(2010
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.