The Hamilton–Jacobi theory is a formulation of classical mechanics equivalent to other formulations as Newtonian, Lagrangian, or Hamiltonian mechanics. The primordial observation of a geometric Hamilton–Jacobi theory is that if a Hamiltonian vector field XH can be projected into the configuration manifold by means of a 1-form dW, then the integral curves of the projected vector field XHdWcan be transformed into integral curves of XH provided that W is a solution of the Hamilton–Jacobi equation. Our aim is to derive a geometric Hamilton–Jacobi theory for physical systems that are compatible with a Nambu–Poisson structure. For it, we study Lagrangian submanifolds of a Nambu–Poisson manifold and obtain explicitly an expression for a Hamilton–Jacobi equation on such a manifold. We apply our results to two interesting examples in the physics literature: the third-order Kummer–Schwarz equations and a system of n copies of a first-order differential Riccati equation. From the first example, we retrieve the original Nambu bracket in three dimensions and from the second example, we retrieve Takhtajan’s generalization of the Nambu bracket to n dimensions.

1.
Abraham
,
R.
and
Marsden
,
J. E.
,
Foundations of Mechanics
, 2nd ed. (
Bejamin-Cummings
,
Reading, MA
,
1978
).
2.
Arnold
,
V. I.
,
Mathematical Methods of Classical Mechanics
, Graduate Texts in Mathematics Vol. 60 (
Springer–Verlag
,
Berlin
,
1978
).
3.
Ballesteros
,
A.
,
J. Differ. Equations
258
,
2873–2907
(
2015
).
4.
Bekov
,
A. A.
,
Soviet Astron.
33
,
71
78
(
1989
).
5.
Berkovich
,
L. M.
,
Arch. Math.
24
,
25
42
(
1988
).
6.
Bursztyn
,
H.
and
Radko
,
O.
,
Ann. Inst. Fourier
53
,
309
337
(
2003
).
7.
Cariñena
,
J. F.
,
Grabowski
,
J.
, and
de Lucas
,
J.
,
J. Phys. A: Math. Theor.
45
,
185202
(
2012
).
8.
Cariñena
,
J. F.
,
de Lucas
,
J.
, and
Sardón
,
C.
,
Int. J. Geom. Methods Mod. Phys.
9
,
1260007
(
2012
).
9.
Cariñena
,
J. F.
,
de Lucas
,
J.
, and
Sardón
,
C.
,
Int. Geom. Methods Mod. Phys.
10
,
0912982
(
2013
).
10.
Cariñena
,
J. F.
,
Marmo
,
G.
, and
Rañada
,
M.
,
J. Phys. A: Math. Gen.
35
,
L679
L686
(
2002
).
11.
Cariñena
,
J. F.
,
Int. J. Geom. Methods Mod. Phys.
3
,
1417
1458
(
2006
).
12.
Cariñena
,
J. F.
,
Int. J. Geom. Methods Mod. Phys.
7
,
431
454
(
2010
).
13.
Cariñena
,
J. F.
,
J. Differ. Equations
257
,
2303–2340
(
2014
).
14.
Curtright
,
T.
and
Zachos
,
C.
,
Phys. Rev. D
68
,
085001
(
2003
).
15.
Gardner
,
C. S.
,
Phys. Rev. Lett.
19
,
1095
(
1967
).
16.
Goldstein
,
H.
,
Mecánica Clásica
, 4th ed. (
Aguilar
,
SA, Madrid
,
1979
).
17.
Grabowski
,
J.
and
de Lucas
,
J.
,
J. Differ. Equations
254
,
179
198
(
2013
).
18.
Grabowski
,
J.
and
Urbanski
,
P.
,
J. Phys. A: Math. Gen.
28
,
6743
6777
(
1995
).
19.
Guillemin
,
V.
and
Pollack
,
A.
,
Differential Topology
(
Prentice Hall, Inc.
,
Englewood Cliff, NJ
,
1974
).
20.
Hormander
,
L.
,
Analysis of Linear Partial Differential Operators III
, Grundlehren der Mathematischen Wissenschaften Vol. 274 (
Springer-Verlag
,
Berlin, Heidelberg
,
1985
).
21.
Ibañez
,
R.
,
J. Phys. A: Math. Gen.
30
,
5427
5444
(
1997
).
22.
Ibañez
,
R.
,
J. Math. Phys.
38
,
2332
(
1997
).
23.
Ioffe
,
M. V.
and
Korschb
,
H. J.
,
Phys. Lett. A
311
,
200
205
(
2003
).
24.
Kibble
,
T. W.
and
Berkshire
,
F. H.
,
Classical Mechanics
, 5th ed. (
Imperial College Press
,
London
,
2004
).
25.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
Mecánica
, 2nd ed., Academia de Ciencias URSS (
Editoral Reverte
,
Barcelona
,
1988
), Vol. I.
26.
Leach
,
P. G. L.
and
Govinder
,
K. G.
,
J. Math. Anal. Appl.
235
,
84
107
(
1999
).
27.
de León
,
M.
,
Iglesias-Ponte
,
D.
, and
Martín de Diego
,
D.
,
J. Phys. A: Math. Theor.
51
,
032902
(
2013
).
28.
de León
,
M.
,
Martín de Diego
,
D.
, and
Vaquero
,
M.
,
Int. Geom. Methods Mod. Phys.
9
,
125007
(
2012
).
29.
de León
,
M.
,
Martín de Diego
,
D.
, and
Vaquero
,
M.
,
J. Geom. Mech.
6
,
121
140
(
2014
).
30.
de León
,
M.
,
Marrero
,
J. C.
, and
Martín de Diego
,
D.
, “
A geometric Hamilton–Jacobi theory for classical field theories
,” in
Variations, Geometry and Physics
(
Nova Science Publishers
,
New York
,
2009
), pp.
129
140
.
31.
de León
,
M.
,
Marrero
,
J. C.
, and
Martín de Diego
,
D.
,
J. Geom. Mech.
2
,
159
198
(
2010
).
32.
de León
,
M.
and
Rodrigues
,
P. R.
,
Methods of Differential Geometry and Analytical Mechanics
(
North-Holland Mathematical Studies
,
1989
), Vol. 158.
33.
de León
,
M.
,
Int. Geom. Methods Mod. Phys.
7
,
1491–1507
(
2010
).
34.
de León
,
M.
,
J. Math. Phys.
54
,
032902
(
2013
).
35.
de Lucas
,
J.
and
Sardón
,
C.
,
J. Math. Phys.
54
,
033505
(
2013
).
36.
Marrero
,
J. C.
and
Sosa
,
D.
,
Int. J. Geom. Methods Mod. Phys.
3
,
605
622
(
2006
).
37.
Nambu
,
Y.
,
Phys. Rev. D
7
,
2405
2412
(
1973
).
38.
Pauffer
,
C.
and
Romer
,
H.
,
J. Geom. Phys.
44
,
52
69
(
2002
).
39.
Polyanin
,
A. D.
and
Zaitsev
,
V. F.
,
Handbook of Exact Solutions for Ordinary Differential Equations
, 2nd ed. (
Chapman Hall/CRC
,
Boca Raton, FL
,
2003
).
40.
Rund
,
H.
,
The Hamilton–Jacobi Theory in the Calculus of Variations
(
Robert E. Krieger, Publishing Co.
,
Nuntington, NY
,
1973
).
41.
Sardón
,
C.
, “
Lie systems, Lie symmetries and reciprocal transformations
,” e-print arXiv:1508.00726.
42.
Takhtajan
,
L.
,
Commun. Math. Phys.
160
,
295
315
(
1994
).
43.
Tulczyjew
,
W. M.
Acad.
C. R.
,
Paris Ser. A-B
283
,
A15
A18
(
1976
).
44.
Weinstein
,
A.
,
Bull. Am. Math. Soc.
5
,
113
(
1981
).
45.
Zabusky
,
N. J.
and
Kruskal
,
M. D.
,
Phys. Rev. Lett.
15
,
240
(
1965
).
You do not currently have access to this content.