The Jacobi metric derived from the line element by one of the authors is shown to reduce to the standard formulation in the non-relativistic approximation. We obtain the Jacobi metric for various stationary metrics. Finally, the Jacobi-Maupertuis metric is formulated for time-dependent metrics by including the Eisenhart-Duval lift, known as the Jacobi-Eisenhart metric.

1.
B.
Rink
, Lecture notes on “Geometric Mechanics and Dynamics,” http://www.few.vu.nl/˜brink/Preview.pdf.
2.
A. A.
Izquierdo
,
M. A. G.
Leon
,
J. M.
Guilarte
, and
M. T.
Mayado
, “
Jacobi metric and Morse theory of dynamical systems
,” e-print arXiv:math-ph/0212017.
3.
P. L.
Maupertuis
,
Accord de Différentes Loix de la Nature qui Avoient Jusqu’ici paru Incompatibles
(
Académie Internationale d’Histoire des Sciences
,
Paris
,
1744
).
4.
S.
Nair
,
S.
Ober-Blöbaum
, and
J. E.
Marsden
, “
The Jacobi-Maupertuis principle in variational integrators
,”
AIP Conf. Proc.
1168
,
464
(
2009
).
5.
O. C.
Pin
, “
Curvature and mechanics
,”
Adv. Math.
15
,
269
311
(
1975
).
6.
V. G.
Gurzadyan
and
G. K.
Savvidy
, “
Collective relaxation of stellar systems
,”
Astron. Astrophys.
160
,
203
210
(
1986
).
7.
A. V.
Tsiganov
, “
The Maupertuis principle and canonical transformations of the extended phase space
,”
J. Nonlinear Math. Phys.
8
,
157
182
(
2001
).
8.
G. W.
Gibbons
, “
The Jacobi-metric for timelike geodesics in static spacetimes
,”
Classical Quantum Gravity
33
,
025004
(
2015
).
9.
G. W.
Gibbons
,
C. A. R.
Herdeiro
,
C. M.
Warnick
, and
M. C.
Werner
, “
Stationary metrics and optical Zermelo-Randers-Finsler geometry
,”
Phys. Rev. D
79
,
044022
(
2009
).
10.
G.
Randers
, “
On an asymmetrical metric in the four-space of general relativity
,”
Phys. Rev.
59
,
195
(
1941
).
11.
C.
Robles
, “
Geodesics in Randers spaces of constant curvature
,”
Trans. Am. Math. Soc.
359
,
1633
(
2007
).
12.
D. C.
Brody
,
G. W.
Gibbons
, and
D. M.
Meier
, “
A Riemannian approach to Randers geodesics
,”
J. Geom. Phys.
106
,
98
(
2016
).
13.
D. C.
Brody
,
G. W.
Gibbons
, and
D. M.
Meier
, “
Time-optimal navigation through quantum wind
,”
New J. Phys.
17
,
033048
(
2015
).
14.
E.
Zermelo
, “
Uber das navigationsproblem bei ruhender oder ver anderlicher windverteilung
,”
Z. Angew. Math. Mech.
11
,
114
(
1931
).
15.
L. P.
Eisenhart
, “
Dynamical trajectories and geodesics
,”
Ann. Math.
30
,
591
606
(
1928
).
16.
C.
Duval
,
G.
Burdet
,
H. P.
Künzle
, and
M.
Perrin
, “
Bargmann structures and Newton-Cartan theory
,”
Phys. Rev. D
31
,
1841
(
1985
).
17.
T.
Houri
, “
Liouville integrability of Hamiltonian systems and spacetime symmetry
,” www.geocities.jp/football_physicien/publication.html.
18.
T.
Iwai
and
N.
Katayama
, “
On extended Taub-NUT metrics
,”
J. Geom. Phys.
12
,
55
75
(
1993
).
19.
Y.
Grandati
,
A.
Bérard
, and
H.
Mohrbach
, “
Bohlin-Arnold-Vassiliev’s duality and conserved quantities
,” e-print arXiv:0803.2610v2 [math-ph],
1–8
.
20.
S.
Chanda
,
P.
Guha
, and
R.
Roychowdhury
, “
Taub-NUT as Bertrand spactime with magnetic fields
,”
J. Geom. Symmetry Phys.
41
,
33
67
(
2016
); e-print arXiv:1503.08183v4.
21.
V.
Perlick
, “
Bertrand spacetimes
,”
Classical Quantum Gravity
9
,
1009
1021
(
1992
).
22.
P.
Das
,
R.
Sk
, and
S.
Ghosh
, “
Motion of charged particle in Reissner—Nordström spacetime: A Jacobi metric approach
,” e-print arXiv:1609.04577 [gr-qc].
23.
M.
Cariglia
and
F. K.
Alves
, “
The Eisenhart lift: A didactical introduction of modern geometrical concepts from Hamiltonian dynamics
,”
Eur. J. Phys.
36
,
025018
(
2015
).
24.
M.
Cariglia
,
G. W.
Gibbons
,
J. W.
van Holten
,
P. A.
Horvathy
, and
P. M.
Zhang
, “
Conformal killing tensors and covariant Hamiltonian dynamics
,”
J. Math. Phys.
55
,
122702
(
2014
).
25.
M.
Cariglia
, “
Hidden symmetries of Eisenhart-Duval lift metrics and the Dirac equation with flux
,”
Phys. Rev. D
86
,
084050
(
2012
).
26.
M.
Cariglia
,
C.
Duval
,
G. W.
Gibbons
, and
P. A.
Horvathy
, “
Eisenhart lifts and symmetries of time-dependent systems
,”
Ann. Phys.
373
,
631
654
(
2016
).
27.
M.
Cariglia
, “
Null lifts and projective dynamics
,”
Ann. Phys.
362
,
642
658
(
2015
).
You do not currently have access to this content.