Pretty good state transfer in networks of qubits occurs when a continuous-time quantum walk allows the transmission of a qubit state from one node of the network to another, with fidelity arbitrarily close to 1. We prove that in a Heisenberg chain with n qubits, there is pretty good state transfer between the nodes at the jth and (n − j + 1)th positions if n is a power of 2. Moreover, this condition is also necessary for j = 1. We obtain this result by applying a theorem due to Kronecker about Diophantine approximations, together with techniques from algebraic graph theory.
REFERENCES
1.
T. D.
Ladd
, F.
Jelezko
, R.
Laflamme
, Y.
Nakamura
, C.
Monroe
, and J. L.
O’Brien
, “Quantum computers
,” Nature
464
(7285
), 45
–53
(2010
).2.
S.
Bose
, “Quantum communication through an unmodulated spin chain
,” Phys. Rev. Lett.
91
(20
), 207901
(2003
).3.
Quantum State Transfer and Network Engineering
, edited by G. M.
Nikolopoulos
and I.
Jex
(Springer
, 2014
).4.
A.
Kay
, “Perfect, efficient, state transfer and its application as a constructive tool
,” Int. J. Quantum Inf. Sci.
8
(04
), 641
–676
(2010
).5.
C. D.
Godsil
, “When can perfect state transfer occur?
,” Electron. J. Linear Algebra
23
, 877
–890
(2012
).6.
S.
Bose
, A.
Casaccino
, S.
Mancini
, and S.
Severini
, “Communication in XYZ all-to-all quantum networks with a missing link
,” Int. J. Quantum Inf.
7
(04
), 713
–723
(2009
).7.
D.
Burgarth
and S.
Bose
, “Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels
,” Phys. Rev. A
71
(5
), 052315
(2005
).8.
L.
Vinet
and A.
Zhedanov
, “Almost perfect state transfer in quantum spin chains
,” Phys. Rev. A
86
(5
), 052319
(2012
).9.
C. D.
Godsil
, S.
Kirkland
, S.
Severini
, and J.
Smith
, “Number-theoretic nature of communication in quantum spin systems
,” Phys. Rev. Lett.
109
(5
), 050502
(2012
).10.
L.
Banchi
, “Ballistic quantum state transfer in spin chains: General theory for quasi-free models and arbitrary initial states
,” Eur. Phys. J. Plus
128
(11
), 1
–18
(2013
).11.
T. J. G.
Apollaro
, L.
Banchi
, A.
Cuccoli
, R.
Vaia
, and P.
Verrucchi
, “99%-fidelity ballistic quantum-state transfer through long uniform channels
,” Phys. Rev. A
85
(5
), 052319
(2012
).12.
S.
Lorenzo
, T. J. G.
Apollaro
, A.
Sindona
, and F.
Plastina
, “Quantum-state transfer via resonant tunneling through local-field-induced barriers
,” Phys. Rev. A
87
(4
), 042313
(2013
).13.
T. J. G.
Apollaro
, S.
Lorenzo
, A.
Sindona
, S.
Paganelli
, G. L.
Giorgi
, and F.
Plastina
, “Many-qubit quantum state transfer via spin chains
,” Physica Scripta
2015
, 014036
.14.
Y.
Omar
and R.
Sousa
, “Pretty good state transfer of entangled states through quantum spin chains
,” New J. Phys.
16
(12
), 123003
(2014
).15.
D.
Burgarth
, “Quantum state transfer with spin chains
,” Ph.D. thesis, University of London
, 2007
.16.
L.
Campos Venuti
, C.
Degli Esposti Boschi
, and M.
Roncaglia
, “Qubit teleportation and transfer across antiferromagnetic spin chains
,” Phys. Rev. Lett.
99
, 060401
(2007
).17.
L.
Campos Venuti
, S. M.
Giampaolo
, F.
Illuminati
, and P.
Zanardi
, “Long-distance entanglement and quantum teleportation in XX spin chains
,” Phys. Rev. A
76
, 052328
(2007
).18.
H.-J.
Mikeska
and A. K.
Kolezhuk
, “One-dimensional magnetism
,” Quantum Magnetism
(Springer
, Berlin, Heidelberg
, 2004
), pp. 1
–83
.19.
C.
Albanese
, M.
Christandl
, N.
Datta
, and A.
Ekert
, “Mirror inversion of quantum states in linear registers
,” Phys. Rev. Lett.
93
(23
), 230502
(2004
).20.
R.
Hanson
, L. P.
Kouwenhoven
, J. R.
Petta
, S.
Tarucha
, and L. M. K.
Vandersypen
, “Spins in few-electron quantum dots
,” Rev. Mod. Phys.
79
(4
), 1217
(2007
).21.
B. E.
Kane
, “A silicon-based nuclear spin quantum computer
,” Nature
393
(6681
), 133
–137
(1998
).22.
T.
Fukuhara
, A.
Kantian
, M.
Endres
, M.
Cheneau
, P.
Schauß
, S.
Hild
, D.
Bellem
, U.
Schollwöck
, T.
Giamarchi
, C.
Gross
et al., “Quantum dynamics of a mobile spin impurity
,” Nat. Phys.
9
(4
), 235
–241
(2013
).23.
G.
Coutinho
, “Quantum state transfer in graphs
,” Ph.D. dissertation (University of Waterloo
, 2014
).24.
A.
Kay
, “Basics of perfect communication through quantum networks
,” Phys. Rev. A
84
(2
), 022337
(2011
).25.
B. M.
Levitan
and V. V.
Zhikov
, Almost Periodic Functions and Differential Equations
(CUP Archive
, 1982
).26.
A. E.
Brouwer
and W. H.
Haemers
, Spectra of Graphs
(Universitext
, Springer, New York
, 2012
).27.
P.
Chr Hemmer
, L.
C Maximon
, and H.
Wergeland
, “Recurrence time of a dynamical system
,” Phys. Rev.
111
, 689
–694
(1957
).28.
G.
Coutinho
, K.
Guo
, and C.
van Bommel
, “Pretty good state transfer between internal nodes of paths
,” e-print arXiv:1611.09836.29.
C.
van Bommel
, “A Complete characterization of pretty good state transfer on paths
,” e-print arXiv:1612.05603.© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.