Pretty good state transfer in networks of qubits occurs when a continuous-time quantum walk allows the transmission of a qubit state from one node of the network to another, with fidelity arbitrarily close to 1. We prove that in a Heisenberg chain with n qubits, there is pretty good state transfer between the nodes at the jth and (n − j + 1)th positions if n is a power of 2. Moreover, this condition is also necessary for j = 1. We obtain this result by applying a theorem due to Kronecker about Diophantine approximations, together with techniques from algebraic graph theory.

1.
T. D.
Ladd
,
F.
Jelezko
,
R.
Laflamme
,
Y.
Nakamura
,
C.
Monroe
, and
J. L.
O’Brien
, “
Quantum computers
,”
Nature
464
(
7285
),
45
53
(
2010
).
2.
S.
Bose
, “
Quantum communication through an unmodulated spin chain
,”
Phys. Rev. Lett.
91
(
20
),
207901
(
2003
).
3.
Quantum State Transfer and Network Engineering
, edited by
G. M.
Nikolopoulos
and
I.
Jex
(
Springer
,
2014
).
4.
A.
Kay
, “
Perfect, efficient, state transfer and its application as a constructive tool
,”
Int. J. Quantum Inf. Sci.
8
(
04
),
641
676
(
2010
).
5.
C. D.
Godsil
, “
When can perfect state transfer occur?
,”
Electron. J. Linear Algebra
23
,
877
890
(
2012
).
6.
S.
Bose
,
A.
Casaccino
,
S.
Mancini
, and
S.
Severini
, “
Communication in XYZ all-to-all quantum networks with a missing link
,”
Int. J. Quantum Inf.
7
(
04
),
713
723
(
2009
).
7.
D.
Burgarth
and
S.
Bose
, “
Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels
,”
Phys. Rev. A
71
(
5
),
052315
(
2005
).
8.
L.
Vinet
and
A.
Zhedanov
, “
Almost perfect state transfer in quantum spin chains
,”
Phys. Rev. A
86
(
5
),
052319
(
2012
).
9.
C. D.
Godsil
,
S.
Kirkland
,
S.
Severini
, and
J.
Smith
, “
Number-theoretic nature of communication in quantum spin systems
,”
Phys. Rev. Lett.
109
(
5
),
050502
(
2012
).
10.
L.
Banchi
, “
Ballistic quantum state transfer in spin chains: General theory for quasi-free models and arbitrary initial states
,”
Eur. Phys. J. Plus
128
(
11
),
1
18
(
2013
).
11.
T. J. G.
Apollaro
,
L.
Banchi
,
A.
Cuccoli
,
R.
Vaia
, and
P.
Verrucchi
, “
99%-fidelity ballistic quantum-state transfer through long uniform channels
,”
Phys. Rev. A
85
(
5
),
052319
(
2012
).
12.
S.
Lorenzo
,
T. J. G.
Apollaro
,
A.
Sindona
, and
F.
Plastina
, “
Quantum-state transfer via resonant tunneling through local-field-induced barriers
,”
Phys. Rev. A
87
(
4
),
042313
(
2013
).
13.
T. J. G.
Apollaro
,
S.
Lorenzo
,
A.
Sindona
,
S.
Paganelli
,
G. L.
Giorgi
, and
F.
Plastina
, “
Many-qubit quantum state transfer via spin chains
,”
Physica Scripta
2015
,
014036
.
14.
Y.
Omar
and
R.
Sousa
, “
Pretty good state transfer of entangled states through quantum spin chains
,”
New J. Phys.
16
(
12
),
123003
(
2014
).
15.
D.
Burgarth
, “
Quantum state transfer with spin chains
,” Ph.D. thesis,
University of London
,
2007
.
16.
L.
Campos Venuti
,
C.
Degli Esposti Boschi
, and
M.
Roncaglia
, “
Qubit teleportation and transfer across antiferromagnetic spin chains
,”
Phys. Rev. Lett.
99
,
060401
(
2007
).
17.
L.
Campos Venuti
,
S. M.
Giampaolo
,
F.
Illuminati
, and
P.
Zanardi
, “
Long-distance entanglement and quantum teleportation in XX spin chains
,”
Phys. Rev. A
76
,
052328
(
2007
).
18.
H.-J.
Mikeska
and
A. K.
Kolezhuk
, “
One-dimensional magnetism
,”
Quantum Magnetism
(
Springer
,
Berlin, Heidelberg
,
2004
), pp.
1
83
.
19.
C.
Albanese
,
M.
Christandl
,
N.
Datta
, and
A.
Ekert
, “
Mirror inversion of quantum states in linear registers
,”
Phys. Rev. Lett.
93
(
23
),
230502
(
2004
).
20.
R.
Hanson
,
L. P.
Kouwenhoven
,
J. R.
Petta
,
S.
Tarucha
, and
L. M. K.
Vandersypen
, “
Spins in few-electron quantum dots
,”
Rev. Mod. Phys.
79
(
4
),
1217
(
2007
).
21.
B. E.
Kane
, “
A silicon-based nuclear spin quantum computer
,”
Nature
393
(
6681
),
133
137
(
1998
).
22.
T.
Fukuhara
,
A.
Kantian
,
M.
Endres
,
M.
Cheneau
,
P.
Schauß
,
S.
Hild
,
D.
Bellem
,
U.
Schollwöck
,
T.
Giamarchi
,
C.
Gross
et al., “
Quantum dynamics of a mobile spin impurity
,”
Nat. Phys.
9
(
4
),
235
241
(
2013
).
23.
G.
Coutinho
, “
Quantum state transfer in graphs
,” Ph.D. dissertation (
University of Waterloo
,
2014
).
24.
A.
Kay
, “
Basics of perfect communication through quantum networks
,”
Phys. Rev. A
84
(
2
),
022337
(
2011
).
25.
B. M.
Levitan
and
V. V.
Zhikov
,
Almost Periodic Functions and Differential Equations
(
CUP Archive
,
1982
).
26.
A. E.
Brouwer
and
W. H.
Haemers
,
Spectra of Graphs
(
Universitext
,
Springer, New York
,
2012
).
27.
P.
Chr Hemmer
,
L.
C Maximon
, and
H.
Wergeland
, “
Recurrence time of a dynamical system
,”
Phys. Rev.
111
,
689
694
(
1957
).
28.
G.
Coutinho
,
K.
Guo
, and
C.
van Bommel
, “
Pretty good state transfer between internal nodes of paths
,” e-print arXiv:1611.09836.
29.
C.
van Bommel
, “
A Complete characterization of pretty good state transfer on paths
,” e-print arXiv:1612.05603.
You do not currently have access to this content.