We consider Schrödinger operators on L2(d)L2() of the form Hω=HI+IH+Vω, where H and H are Schrödinger operators on L2(d) and L2(), respectively, and Vω(x,y):=ξdλξ(ω)v(xξ,y),xd,y is a random “surface potential.” We investigate the behavior of the integrated density of surface states of Hω near the bottom of the spectrum and near internal band edges. The main result of the current paper is that, under suitable assumptions, the behavior of the integrated density of surface states of Hω can be read off from the integrated density of states of a reduced Hamiltonian H+Wω where Wω is a quantum mechanical average of Vω with respect to y. We are particularly interested in cases when H is a magnetic Schrödinger operator, but we also recover some of the results from Kirsch and Warzel [J. Funct. Anal. 230, 222–250 (2006)] for non-magnetic H.

1.
Akcoglu
,
M. A.
and
Krengel
,
U.
, “
Ergodic theorems for superadditive processes
,”
J. Reine Angew. Math.
323
,
53
67
(
1981
).
2.
Albeverio
,
S.
,
Gesztesy
,
F.
,
Hèegh-Krohn
,
R.
, and
Holden
,
H.
,
Solvable Models in Quantum Mechanics
, 2nd ed. (
AMS Chelsea Publishing
,
Providence, RI
,
2005
).
3.
Amrein
,
W. O.
,
Boutet de Monvel
,
A.
, and
Georgescu
,
V.
,
C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians
, Progress in Mathematics Vol. 135 (
Birkhäuser Verlag
,
Basel
,
1996
).
4.
Astaburuaga
,
M. A.
,
Briet
,
Ph.
,
Bruneau
,
V.
,
Fernández
,
C.
, and
Raikov
,
G. D.
, “
Dynamical resonances and SSF singularities for a magnetic Schrödinger operator
,”
Serdica Math. J.
34
,
179
218
(
2008
).
5.
Avron
,
J.
,
Herbst
,
I.
, and
Simon
,
B.
, “
Schrödinger operators with magnetic fields. I. General interactions
,”
Duke Math. J.
45
,
847
883
(
1978
).
6.
Birman
,
M. Sh.
,
Eleven Papers on Analysis
, AMS Translations Vol. 53 (
AMS
,
Providence, RI
,
1966
), pp.
23
80
[“On the spectrum of singular boundary-value problems,” Mat. Sb. (N.S.) 55, 125–174 (1961) (in Russian)].
7.
Bonnaillie
,
V.
, “
On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners
,”
Asymptot. Anal.
41
,
215
258
(
2005
).
8.
Broderix
,
K.
,
Hundertmark
,
D.
,
Kirsch
,
W.
, and
Leschke
,
H.
, “
The fate of Lifshits tails in magnetic fields
,”
J. Stat. Phys.
80
,
1
22
(
1995
).
9.
Doi
,
S.
,
Iwatsuka
,
A.
, and
Mine
,
T.
, “
The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields
,”
Math. Z.
237
,
335
371
(
2001
).
10.
Englisch
,
H.
,
Kirsch
,
W.
,
Schröder
,
M.
, and
Simon
,
B.
, “
Random Hamiltonians ergodic in all but one direction
,”
Commun. Math. Phys.
128
,
613
625
(
1990
).
11.
Englisch
,
H.
,
Kirsch
,
W.
,
Schröder
,
M.
, and
Simon
,
B.
, “
Density of surface states in discrete models
,”
Phys. Rev. Lett.
61
,
1261
1262
(
1988
).
12.
Erdos
,
L.
, “
Lifschitz tail in a magnetic field: The nonclassical regime
,”
Probab. Theory Relat. Fields
112
,
321
371
(
1998
).
13.
Erdos
,
L.
, “
Lifschitz tail in a magnetic field: Coexistence of classical and quantum behavior in the borderline case
,”
Probab. Theory Relat. Fields
121
,
291
236
(
2001
).
14.
Fock
,
V.
, “
Bemerkung zur quantelung des harmonischen oszillators im magnetfeld
,”
Z. Phys.
47
,
446
448
(
1928
).
15.
Helffer
,
B.
and
Morame
,
A.
, “
Magnetic bottles in connection with superconductivity
,”
J. Funct. Anal.
185
,
604
680
(
2001
).
16.
Hupfer
,
T.
,
Leschke
,
H.
,
Müller
,
P.
, and
Warzel
,
S.
, “
Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials
,”
Rev. Math. Phys.
13
,
1547
1581
(
2001
).
17.
Karamata
,
J.
, “
Neuer beweis und verallgemeinerung der tauberschen Sätze, welche die Laplacesche und Stieltjessche transformation betreffen
,”
J. Reine Angew. Math.
1931
(
164
),
27
39
.
18.
Kirsch
,
W.
and
Martinelli
,
F.
, “
On the ergodic properties of the spectrum of general random operators
,”
J. Reine Angew. Math.
1982
(
334
),
141
156
(
1982
).
19.
Kirsch
,
W.
and
Martinelli
,
F.
, “
On the spectrum of Schrödinger operators with a random potential
,”
Commun. Math. Phys.
85
,
329
350
(
1982
).
20.
Kirsch
,
W.
and
Martinelli
,
F.
, “
On the density of states of Schrödinger operators with a random potential
,”
J. Phys. A: Math. Gen.
15
,
2139
2156
(
1982
).
21.
Kirsch
,
W.
and
Martinelli
,
F.
, “
Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians
,”
Commun. Math. Phys.
89
,
27
40
(
1983
).
22.
Kirsch
,
W.
and
Metzger
,
B.
, “
The integrated density of states for random Schrödinger operators
,” in
Spectral Theory and Mathematical Physics
, edited by
Gesztesy
F.
and
Simon
B.
(
American Mathematical Society
,
Providence, RI
,
2007
), pp.
649
696
.
23.
Kirsch
,
W.
and
Simon
,
B.
, “
Lifshitz tails for periodic plus random potentials
,”
J. Stat. Phys.
42
,
799
808
(
1986
).
24.
Kirsch
,
W.
and
Warzel
,
S.
, “
Anderson localization and Lifshits tails for random surface potentials
,”
J. Funct. Anal.
230
,
222
250
(
2006
).
25.
Klopp
,
F.
, “
Internal Lifshits tails for random perturbations of periodic Schrödinger operators
,”
Duke Math. J.
98
,
335
396
(
1999
).
26.
Klopp
,
F.
, “
Lifshitz tails for alloy-type models in a constant magnetic field
,”
J. Phys. A: Math. Theor.
43
,
474029
(
2010
).
27.
Klopp
,
F.
and
Raikov
,
G. D.
, “
Lifshitz tails in constant magnetic fields
,”
Commun. Math. Phys.
267
,
669
701
(
2006
).
28.
Klopp
,
F.
and
Wolff
,
T.
, “
Lifshitz tails for 2-dimensional random Schrödinger operators
,”
J. Anal. Math.
88
,
63
147
(
2002
).
29.
Landau
,
L.
, “
Diamagnetismus der Metalle
,”
Z. Phys.
64
,
629
637
(
1930
).
30.
Leinfelder
,
H.
and
Simader
,
C.
, “
Schrödinger operators with singular magnetic vector potentials
,”
Math. Z.
176
,
1
19
(
1981
).
31.
Mohamed
,
A.
and
Raikov
,
G. D.
, “
On the spectral theory of the Schrödinger operator with electromagnetic potential
,” in
Pseudo-Differential Calculus and Mathematical Physics
, Mathematical Topics Vol. 5 (
Akademie Verlag
,
Berlin
,
1994
), pp.
298–390
.
32.
Pastur
,
L.
and
Figotin
,
A.
, “
Spectra of random and almost-periodic operators
,”
Grundlehren der Mathematischen Wissenschaften
(
Springer-Verlag
,
Berlin
,
1992
), Vol. 297.
33.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics I: Analysis of Operators
(
Academic Press
,
1978
).
34.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics IV: Functional Analysis
(
Academic Press
,
1972
).
35.
Shubin
,
M. A.
,
Pseudodifferential Operators and Spectral Theory
, 2nd ed. (
Springer-Verlag
,
Berlin
,
2001
).
36.
Simon
,
B.
, “
The bound state of weakly coupled Schrödinger operators in one and two dimensions
,”
Ann. Phys.
97
,
279
288
(
1976
).
37.
Simon
,
B.
,
Trace Ideals and Their Applications
, Mathematical Surveys and Monographs Vol. 120, 2nd ed. (
American Mathematical Society
,
Providence, RI
,
2005
).
You do not currently have access to this content.