In probability and statistics, the Simpson’s paradox is a paradox in which a trend that appears in different groups of data disappears when these groups are combined, while the reverse trend appears for the aggregate data. In this paper, we give some results about the occurrence of the Simpson’s paradox in quantum mechanics. In particular, we prove that the Simpson’s paradox occurs for solutions of the quantum harmonic oscillator both in the stationary case and in the non-stationary case. In the non-stationary case, the Simpson’s paradox is persistent: if it occurs at any time t=t, then it occurs at any time tt. Moreover, we prove that the Simpson’s paradox is not an isolated phenomenon, namely, that, close to initial data for which it occurs, there are lots of initial data (a open neighborhood), for which it still occurs. Differently from the case of the quantum harmonic oscillator, we also prove that the paradox appears (asymptotically) in the context of the nonlinear Schrödinger equation but at intermittent times.

1.
Berestycki
,
H.
,
Lions
,
P. L.
, and
Peletier
,
L. A.
, “
An ODE approach to the existence of positive solutions for semilinear problems in RN
,”
Indiana Univ. Math. J.
30
(
1
),
141
157
(
1981
).
2.
Berestycki
,
H.
and
Lions
,
P. L.
, “
Nonlinear scalar field equations
,”
Arch. Ration. Mech. Anal.
82
,
313
345
(
1983
).
3.
Berezin
,
F. A.
and
Shubin
,
M.
,
The Schrödinger Equation
(
Springer
,
1991
).
4.
Bickel
P. J.
,
Hammel
,
E. A.
, and
O’Connell
,
J. W.
, “
Sex bias in graduate admissions: Data from Berkeley
,”
Science
187
(
4175
),
398
404
(
1975
).
5.
Blyth
,
C. R.
, “
On Simpson’s paradox and the sure-thing principle
,”
J. Am. Stat. Assoc.
67
(
338
),
364
366
(
1972
).
6.
Gidas
,
B.
,
Ni
,
W. M.
, and
Nirenberg
,
L.
, “
Symmetry and related properties via the maximum principle
,”
Commun. Math. Phys.
68
,
209
243
(
1979
).
7.
Goltz
,
H. H.
and
Smith
,
M. L.
, “
Yule-Simpson’s paradox in research
,”
Pract. Assess., Res. Eval.
15
(
15
),
1
9
(
2010
), http://pareonline.net/getvn.asp?v=15&n=15.
8.
Good
,
I. J.
and
Mittal
,
Y.
, “
The amalgamation and geometry of two-by-two contingency tables
,”
Ann. Stat.
15
(
2
),
694
711
(
1987
).
9.
Kwong
,
M. K.
, “
Uniqueness of positive solutions of Δuu+up=0 in Rn
,”
Arch. Ration. Mech. Anal.
105
,
243
266
(
1989
).
10.
Malinas
,
G.
and
Bigelow
,
J.
, “
Simpson’s paradox
,” in
The Stanford Encyclopedia of Philosophy
, edited by
Edward N.
Zalta
(Metaphysics Research Lab, CSLI, Stanford University,
2012
), http://plato.stanford.edu/archives/win2012/entries/paradox-simpson/.
11.
Martel
,
Y.
and
Merle
,
F.
, “
Multi solitary waves for the nonlinear Schrödinger equations
,”
Ann. Inst. Henri Poincare C Nonlinear Anal.
23
,
849
864
(
2006
).
12.
Paris
,
M.
, “
Two quantum Simpson’s paradoxes
,”
J. Phys. A: Math. Theor.
45
,
132001
(
2012
).
13.
Pavlides
,
M. G.
and
Perlman
,
M. D.
, “
How likely is Simpson’s paradox?
,”
Am. Stat.
63
,
226
233
(
2009
).
14.
Pearson
,
K.
,
Lee
,
A.
, and
Bramley-Moore
,
L.
, “
Genetic (reproductive) selection: Inheritance of fertility in man, and of fecundity in thoroughbred racehorses
,”
Philos. Trans. R. Soc., A
192
,
257
330
(
1899
).
15.
Shi
,
Y.
, “
Quantum Simpson’s paradox and high order bell-tsileron inequalities
,” preprint arXiv:1203.2675.
16.
Simpson
,
E. H.
, “
The interpretation of interaction in contingency tables
,”
J. R. Stat. Soc., Ser. B
13
,
238
241
(
1951
), http://www.jstor.org/stable/2984065.
17.
Wagner
,
C. H.
, “
Simpson’s paradox in real Life
,”
Am. Stat.
36
(
1
),
46
48
(
1982
).
18.
Yule
,
G. U.
, “
Notes on the theory of association of attributes in statistics
,”
Biometrika
2
(
2
),
121
134
(
1903
).
19.
Yule
,
G. U.
,
An Introduction to the Theory of Statistics
(
Griffin
,
London
,
1922
).
20.
Yule
,
G. U.
and
Kendall
,
M. G.
,
An Introduction to the Theory of Statistics
(
Griffin
,
London
,
1950
).
You do not currently have access to this content.