We relate the existence of Noether global conserved currents associated with locally variational field equations to the existence of global solutions for a local variational problem generating global equations. Both can be characterized as the vanishing of certain cohomology classes. In the case of a 3-dimensional Chern–Simons gauge theory, the variationally featured cohomological obstruction to the existence of global solutions is sharp and equivalent to the usual obstruction in terms of the Chern characteristic class for the flatness of a principal connection. We suggest a parallelism between the geometric interpretation of characteristic classes as obstruction to the existence of flat principal connections and the interpretation of certain de Rham cohomology classes to be the obstruction to the existence of global extremals for a local variational principle.

1.
Anderson
,
I. M.
and
Duchamp
,
T.
, “
On the existence of global variational principles
,”
Am. Math. J.
102
,
781
868
(
1980
).
2.
Bañados
,
M.
,
Teitelboim
,
C.
, and
Zanelli
,
J.
, “
Black hole in three-dimensional spacetime
,”
Phys. Rev. Lett.
69
(
13
),
1849
1851
(
1992
).
3.
Bauderon
,
M.
, “
Le problème inverse du calcul des variations
,”
Ann. de l’I.H.P.
36
(
2
),
159
179
(
1982
).
4.
Bessel-Hagen
,
E.
, “
Über die erhaltungssätze der elektrodynamik
,”
Math. Ann.
84
,
258
276
(
1921
).
5.
Bonora
,
L.
,
Cvitan
,
M.
,
Dominis Prester
,
P.
,
Pallua
,
S.
, and
Smolič
,
I.
, “
Symmetries and gravitational Chern–Simons Lagrangian terms
,”
Phys. Lett. B
725
(
4-5
),
468
472
(
2013
).
6.
Borowiec
,
A.
,
Ferraris
,
M.
, and
Francaviglia
,
M.
, “
A covariant formalism for Chern–Simons gravity
,”
J. Phys. A
36
(
10
),
2589
2598
(
2003
).
7.
Borowiec
,
A.
,
Ferraris
,
M.
,
Francaviglia
,
M.
, and
Palese
,
M.
, “
Conservation laws for non-global Lagrangians
,”
Univ. Iagel. Acta Math.
41
,
319
331
(
2003
).
8.
Brajerèík
,
J.
and
Krupka
,
D.
, “
Variational principles for locally variational forms
,”
J. Math. Phys.
46
,
052903
(
2005
).
9.
Brajerèík
,
J.
and
Krupka
,
D.
, in
XV International Workshop on Geometry and Physics
[“
Cohomology and local variational principles
,”
Publ. R. Soc. Mat. Esp.
11
,
119
124
(
2007
)].
10.
Cartan
,
É.
,
Lecons Sur Les Invariants Intègraux
(
Hermann
,
Paris
,
1922
).
11.
Catalan
,
P.
,
Izaurieta
,
F.
,
Salgado
,
P.
, and
Salgado
,
S.
, “
Topological gravity and Chern–Simons forms in d = 4
,”
Phys. Lett. B
751
,
205
208
(
2015
).
12.
Cattafi
,
F.
,
Palese
,
M.
, and
Winterroth
,
E.
, “
Variational derivatives in locally Lagrangian field theories and Noether–Bessel-Hagen currents
,”
Int. J. Geom. Methods Mod. Phys.
13
(
8
),
1650067
(
2016
).
13.
Chamseddine
,
A. H.
, “
Topological gauge theory of gravity in five and all odd dimensions
,”
Phys. Lett. B
233
(
3–4
),
291
294
(
1989
).
14.
Chamseddine
,
A. H.
, “
Topological gravity and supergravity in various dimensions
,”
Nucl. Phys. B
346
(
1
),
213
234
(
1990
).
15.
Chern
,
S. S.
and
Simons
,
J.
, “
Some cohomology classes in principal fiber bundles and their application to Riemannian geometry
,”
Proc. Natl. Acad. Sci. U. S. A.
68
,
791
794
(
1971
).
16.
Chern
,
S. S.
and
Simons
,
J.
, “
Characteristic forms and geometric invariants
,”
Ann. Math.
99
(
2
),
48
69
(
1974
).
17.
Dedecker
,
P.
, “
Quelques applications de la suite spectrale aux intégrales multiples du calcul des variations et aux invariants intégraux, chapitre I: Suites spectrales et généralisations
,”
Bull. Soc. Roy. Sci. Liège
24
,
276
295
(
1955
).
18.
Dedecker
,
P.
, “
Quelques applications de la suite spectrale aux intégrales multiples du calcul des variations et aux invariants intégraux, chapitre II: Espaces de jets locaux et faisceaux
,”
Bull. Soc. Roy. Sci. Liège
25
,
387
399
(
1956
).
19.
Dedecker
,
P.
,
Calcul des Variations et Topologie Algébrique Mémoires de la Société Royale des Sciences de Liège, Quatrième série, Fascicule I
(
Université de Liège
,
1957
), Vol.
19
, pp.
1
215
.
20.
Dedecker
,
P.
,
On the Generalization of Symplectic Geometry to Multiple Integrals in the Calculus of Variations
,
Lecture Notes in Mathematics
Vol.
570
(
Springer
,
Berlin
,
1977
), pp.
395
456
.
21.
Dedecker
,
P.
and
Tulczyjew
,
W. M.
, “
Spectral sequences and the inverse problem of the calculus of variations
,” in
Proceedings of the International Colloquium on Differential Geometrical Methods in Mathematical Physics, Salamanca 1979
,
Lecture Notes in Mathematics
Vol.
836
(
Springer
,
Berlin
,
1980
), pp.
498
503
.
22.
Deser
,
S.
,
Jackiw
,
R.
, and
Templeton
,
S.
, “
Topologically massive gauge theories
,”
Ann. Phys.
140
(
2
),
372
411
(
1982
).
23.
Edelstein
,
J. D.
,
Hassaïne
,
M.
,
Troncoso
,
R.
, and
Zanelli
,
J.
, “
Lie-algebra expansions, Chern–Simons theories and the Einstein-Hilbert Lagrangian
,”
Phys. Lett. B
640
(
5-6
),
278
284
(
2006
).
24.
Ferrari
,
F.
and
Lazzizzera
,
I.
, “
A Chern–Simons field theory description of topologically linked polymers
,”
Phys. Lett. B
444
(
1-2
),
167
173
(
1998
).
25.
Ferrari
,
F.
and
Lazzizzera
,
I.
, “
Topological entanglement of polymers and Chern–Simons field theory
,”
J. Phys. A
32
(
8
),
1347
1357
(
1999
).
26.
Ferraris
,
M.
,
Francaviglia
,
M.
,
Palese
,
M.
, and
Winterroth
,
E.
, “
Canonical connections in gauge-natural field theories
,”
Int. J. Geom. Methods Mod. Phys.
5
(
6
),
973
988
(
2008
).
27.
Ferraris
,
M.
,
Francaviglia
,
M.
,
Palese
,
M.
, and
Winterroth
,
E.
, “
Gauge-natural Noether currents and connection fields
,”
Int. J. Geom. Methods Mod. Phys.
8
(
1
),
177
185
(
2011
).
28.
Ferraris
,
M.
,
Palese
,
M.
, and
Winterroth
,
E.
, “
Local variational problems and conservation laws
,”
Differ. Geom. Appl.
29
,
S80
S85
(
2011
).
29.
Francaviglia
,
M.
,
Palese
,
M.
, and
Winterroth
,
E.
, “
Cohomological obstructions in locally variational field theories
,”
J. Phys. Conf. Ser.
474
,
012017
(
2013
).
30.
Francaviglia
,
M.
,
Palese
,
M.
, and
Winterroth
,
E.
, “
Variationally equivalent problems and variations of Noether currents
,”
Int. J. Geom. Methods Mod. Phys.
10
(
1
),
1220024
(
2013
).
31.
Giachetta
,
G.
,
Mangiarotti
,
L.
, and
Sardanashvily
,
G.
, “
Noether conservation laws in higher-dimensional Chern–Simons theory
,”
Mod. Phys. Lett. A
18
(
37
),
2645
2651
(
2003
).
32.
Krupka
,
D.
, “
Variational sequences on finite order jet spaces
,” in
Proceedings of the Differential Geometry and its Applications
, edited by
Janyška
,
J.
and
Krupka
,
D.
(
World Scientific
,
Singapore
,
1990
), pp.
236
254
.
33.
Krupka
,
D.
, “
Global variational theory in fibred spaces
,” in
Handbook of Global Analysis
(
Elsevier Science
,
B.V., Amsterdam
,
2008
), Vol.
1215
, pp.
773
836
.
34.
Krupka
,
D.
,
Introduction to Global Varational Geometry
(
Atlantis Press
,
2015
).
35.
Lepage
,
Th. H. J.
, “
Sur les champ geodesiques du Calcul de Variations, I
,”
Bull. Acad. Roy. Belg., Cl. Sci.
22
,
716
729
(
1936
);
Lepage
,
Th. H. J.
, “
Sur les champ geodesiques du Calcul de Variations, II
,”
Bull. Acad. Roy. Belg., Cl. Sci.
22
,
1036
1046
(
1936
).
36.
Noether
,
E.
, “
Invariante variationsprobleme
,”
Nachr. Ges. Wiss. Gött., Math. Phys. Kl.
II
,
235
257
(
1918
).
37.
Palese
,
M.
,
Rossi
,
O.
,
Winterroth
,
E.
, and
Musilová
,
J.
, “
Variational sequences, representation sequences and applications in physics
,”
SIGMA
12
,
045
(
2016
).
38.
Palese
,
M.
and
Winterroth
,
E.
, “
Nonlinear (2 + 1)-dimensional field equations from incomplete Lie algebra structures
,”
Phys. Lett. B
532
(
1-2
),
129
134
(
2002
).
39.
Palese
,
M.
and
Winterroth
,
E.
, “
On the relation between the Jacobi morphism and the Hessian in gauge-natural field theories
,”
Theor. Math. Phys.
152
(
2
),
1191
1200
(
2007
).
40.
Palese
,
M.
and
Winterroth
,
E.
, “
A variational perspective on classical Higgs fields in gauge-natural theories
,”
Theor. Math. Phys.
168
(
1
),
1002
1008
(
2011
).
41.
Palese
,
M.
and
Winterroth
,
E.
, “
Constructing towers with skeletons from open Lie algebras and integrability
,”
J. Phys. Conf. Ser.
343
,
012091
(
2012
).
42.
Takens
,
F.
, “
A global version of the inverse problem of the calculus of variations
,”
J. Differ. Geom.
14
,
543
562
(
1979
).
43.
Tulczyjew
,
W. M.
, “
The Lagrange complex
,”
Bull. Soc. Math. France
105
,
419
431
(
1977
).
44.
Tulczyjew
,
W. M.
, “
The Euler–Lagrange resolution
,” in
Proceedings of the International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Provence, 1979
,
Lecture Notes in Mathematics
Vol.
836
(
Springer
,
Berlin
,
1980
), pp.
22
48
.
45.
Tulczyjew
,
W. M.
, “
Cohomology of the Lagrange complex
,”
Ann. Scuola Norm. Sup. Pisa
14
,
217
227
(
1988
).
46.
Vinogradov
,
A. M.
, “
On the algebro–geometric foundations of Lagrangian field theory
,”
Soviet Math. Dokl.
18
,
1200
1204
(
1977
).
47.
Winterroth
,
E.
, “
Variational cohomology and global solutions in higher Chern–Simons gauge theory
” (submitted).
48.
Witten
,
E.
, “
2 + 1-dimensional gravity as an exactly soluble system
,”
Nucl. Phys. B
311
(
1
),
46
78
(
1988
).
49.
Witten
,
E.
, “
Quantum field theory and the Jones polynomial
,”
Commun. Math. Phys.
121
(
3
),
351
399
(
1989
).
You do not currently have access to this content.