The monodromy of torus bundles associated with completely integrable systems can be computed using geometric techniques (constructing homology cycles) or analytic arguments (computing discontinuities of abelian integrals). In this article, we give a general approach to the computation of monodromy that resembles the analytical one, reducing the problem to the computation of residues of polar 1-forms. We apply our technique to three celebrated examples of systems with monodromy (the champagne bottle, the spherical pendulum, the hydrogen atom) and to the case of non-degenerate focus-focus singularities, re-obtaining the classical results. An advantage of this approach is that the residue-like formula can be shown to be local in a neighborhood of a singularity, hence allowing the definition of monodromy also in the case of non-compact fibers. This idea has been introduced in the literature under the name of scattering monodromy. We prove the coincidence of the two definitions with the monodromy of an appropriately chosen compactification.

1.
Arnol’d
,
V. I.
, inMathematical Methods of Classical Mechanics, Graduate Texts in Mathematics Vol. 60, 2nd ed. (Springer-Verlag, New York, 1989), Translated by K. Vogtmann and A. Weinstein.
2.
Arnold
,
V. I.
,
Gusein-Zade
,
S. M.
, and
Varchenko
,
A. N.
, inSingularities of Differentiable Maps, Classification of Critical Points, Caustics and Wave Fronts Vol. 1 (Modern Birkhäuser Classics, Birkhäuser, Boston, 2012).
3.
Bates
,
L. M.
, “
Monodromy in the champagne bottle
,”
J. Appl. Math. Phys.
42
(
6
),
837
847
(
1991
).
4.
Bates
,
L. M.
and
Cushman
,
R. H.
, “
Scattering monodromy and the A1 singularity
,”
Cent. Eur. J. Math.
5
(
3
),
429
451
(
2007
).
5.
Bolsinov
,
A. V.
and
Fomenko
,
A. T.
,
Integrable Hamiltonian Systems: Geometry, Topology, Classification
(
Chapman & Hall/CRC
,
2004
).
6.
Cushman
,
R. H.
and
Bates
,
L. M.
,
Global Aspects of Classical Integrable Systems
, 2nd ed. (
Birkhäuser
,
2015
).
7.
Cushman
,
R. H.
and
Duistermaat
,
J. J.
, “
Non-hamiltonian monodromy
,”
J. Differ. Equations
172
(
1
),
42
58
(
2001
).
8.
Cushman
,
R. H.
and
Sadovskií
,
D. A.
, “
Monodromy in the hydrogen atom in crossed fields
,”
Phys. D
142
(
1-2
),
166
196
(
2000
).
9.
Duistermaat
,
J. J.
, “
On global action-angle coordinates
,”
Commun. Pure Appl. Math.
33
(
6
),
687
706
(
1980
).
10.
Dullin
,
H. R.
and
Waalkens
,
H.
, “
Nonuniqueness of the phase shift in central scattering due to monodromy
,”
Phys. Rev. Lett.
101
(
7
),
070405
(
2008
).
11.
Dullin
,
H. R.
and
Ngọc
,
S. Vũ
, “
Vanishing twist near focus–focus points
,”
Nonlinearity
17
(
5
),
1777
(
2004
).
12.
Efstathiou
,
K.
,
Metamorphoses of Hamiltonian Systems with Symmetries
(
Springer
,
Berlin, Heidelberg, New York
,
2005
).
13.
Efstathiou
,
K.
,
Cushman
,
R. H.
, and
Sadovskií
,
D. A.
, “
Fractional monodromy in the 1:−2 resonance
,”
Adv. Math.
209
(
1
),
241
273
(
2007
).
14.
Eliasson
,
H.
, “
Hamiltonian systems with Poisson commuting integrals
,” Ph.D. thesis,
University of Stockholm
,
1984
.
15.
Lerman
,
L. M.
and
Umanskiĭ
,
Ya. L.
, “
Classification of four-dimensional integrable Hamiltonian systems and Poisson actions of ℝ2 in extended neighborhoods of simple singular points. I
,”
Russ. Acad. Sci. Sb. Math.
77
(
2
),
511
542
(
1994
).
16.
Matveev
,
V. S.
, “
Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type
,”
Sb. Math.
187
(
4
),
495
524
(
1996
).
17.
Miranda
,
E.
and
Vũ Ngọc
,
S.
, “
A singular Poincaré lemma
,”
Int. Math. Res. Not.
2005
(
1
),
27
45
.
18.
Nekhoroshev
,
N. N.
, “
Action-angle variables and their generalizations
,”
Trans. Moscow Math. Soc.
26
,
180
198
(
1972
).
19.
Schmidt
,
S.
and
Dullin
,
H. R.
, “
Dynamics near the p : − q resonance
,”
Phys. D
239
(
19
),
1884
1891
(
2010
).
20.
Sugny
,
D.
,
Mardešić
,
P.
,
Pelletier
,
M.
,
Jebrane
,
A.
, and
Jauslin
,
H. R.
, “
Fractional hamiltonian monodromy from a Gauss–Manin monodromy
,”
J. Math. Phys.
49
(
4
),
042701
(
2008
).
21.
Vũ Ngọc
,
S.
, “
Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités
,” Ph.D. thesis,
Université Grenoble 1 - Joseph Fourier
,
1998
.
22.
Zung
,
N. T.
, “
A note on focus-focus singularities
,”
Differ. Geom. Its Appl.
7
(
2
),
123
130
(
1997
).
23.
Zung
,
N. T.
, “
Another note on focus-focus singularities
,”
Lett. Math. Phys.
60
(
1
),
87
99
(
2002
).
You do not currently have access to this content.