We show that each central configuration in the three-dimensional hyperbolic sphere is equivalent to one central configuration on a particular two-dimensional hyperbolic sphere. However, there exist both special and ordinary central configurations in the three-dimensional sphere that are not confined to any two-dimensional sphere.

1.
Bridson
,
M. R.
and
Haefliger
,
A.
,
Metric Spaces of Non-Positive Curvature
,
Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences)
Vol.
319
(
Springer-Verlag
,
Berlin
,
1999
).
2.
Diacu
,
F.
,
Pérez-Chavela
,
E.
, and
Santoprete
,
M.
, “
Saari’s conjecture for the collinear N-body problem
,”
Trans. Am. Math. Soc.
357
(
10
),
4215
4223
(
2005
).
3.
Diacu
,
F.
,
Relative Equilibria of the Curved N-Body Problem
,
Atlantis Studies in Dynamical Systems
Vol.
1
(
Atlantis Press
,
Paris
,
2012
).
4.
Diacu
,
F.
, “
Polygonal homographic orbits of the curved N-body problem
,”
Trans. Am. Math. Soc.
364
(
5
),
2783
2802
(
2012
).
5.
Diacu
,
F.
, “
Relative equilibria in the 3-dimensional curved N-body problem
,”
Mem. Am. Math. Soc.
228
(
1071
),
1
92
(
2014
).
6.
Diacu
,
F.
, “
Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem
,”
J. Math. Phys.
57
(
11
),
112701
(
2016
).
7.
Diacu
,
F.
,
Sánchez-Cerritos
,
J. M.
, and
Zhu
,
S.
, “
Stability of fixed points and associated relative equilibria of the 3-body problem on S1 and S2
,”
J. Dyn. Differ. Equations
(to be published).
8.
Diacu
,
F.
,
Stoica
,
C.
, and
Zhu
,
S.
, “
Central configurations of the curved N-body problem
,” e-print arXiv:1603.03342.
9.
Hachmeister
,
J.
,
Little
,
J.
,
McGhee
,
J.
,
Pelayo
,
R.
, and
Sasarita
,
S.
, “
Continua of central configurations with a negative mass in the N-body problem
,”
Celestial Mech. Dyn. Astron.
115
(
4
),
427
438
(
2013
).
10.
Kilin
,
A. A.
, “
Libration points in spaces S2 and L2
,”
Regul. Chaotic Dyn.
4
(
1
),
91
103
(
1999
).
11.
Llibre
,
J.
,
Moeckel
,
R.
, and
Simó
,
C.
,
Central Configurations, Periodic Orbits, and Hamiltonian Systems
,
Advanced Courses in Mathematics
(
CRM Barcelona, Birkhäuser/Springer
,
Basel
,
2015
).
12.
Moeckel
,
R.
,
Celestial Mechanics—Especially Central Configurations
,
unpublished lecture notes:
http://www.math.umn.edu/rmoeckel/notes/CMNotes.pdf.
13.
Roberts
,
G.
, “
A continuum of relative equilibria in the five-body problem
,”
Phys. D
127
(
3-4
),
141
145
(
1999
).
14.
Smale
,
S.
, “
Mathematical problems for the next century
,”
Math. Intell.
20
(
2
),
7
15
(
1998
).
15.
Zhu
,
S.
, “
Eulerian relative equilibria of the curved 3-body problems in S2
,”
Proc. Am. Math. Soc.
142
(
8
),
2837
2848
(
2014
).
You do not currently have access to this content.