We show that each central configuration in the three-dimensional hyperbolic sphere is equivalent to one central configuration on a particular two-dimensional hyperbolic sphere. However, there exist both special and ordinary central configurations in the three-dimensional sphere that are not confined to any two-dimensional sphere.
REFERENCES
1.
Bridson
, M. R.
and Haefliger
, A.
, Metric Spaces of Non-Positive Curvature
, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences)
Vol. 319
(Springer-Verlag
, Berlin
, 1999
).2.
Diacu
, F.
, Pérez-Chavela
, E.
, and Santoprete
, M.
, “Saari’s conjecture for the collinear N-body problem
,” Trans. Am. Math. Soc.
357
(10
), 4215
–4223
(2005
).3.
Diacu
, F.
, Relative Equilibria of the Curved N-Body Problem
, Atlantis Studies in Dynamical Systems
Vol. 1
(Atlantis Press
, Paris
, 2012
).4.
Diacu
, F.
, “Polygonal homographic orbits of the curved N-body problem
,” Trans. Am. Math. Soc.
364
(5
), 2783
–2802
(2012
).5.
Diacu
, F.
, “Relative equilibria in the 3-dimensional curved N-body problem
,” Mem. Am. Math. Soc.
228
(1071
), 1
–92
(2014
).6.
Diacu
, F.
, “Bifurcations of the Lagrangian orbits from the classical to the curved 3-body problem
,” J. Math. Phys.
57
(11
), 112701
(2016
).7.
Diacu
, F.
, Sánchez-Cerritos
, J. M.
, and Zhu
, S.
, “Stability of fixed points and associated relative equilibria of the 3-body problem on S1 and S2
,” J. Dyn. Differ. Equations
(to be published).8.
Diacu
, F.
, Stoica
, C.
, and Zhu
, S.
, “Central configurations of the curved N-body problem
,” e-print arXiv:1603.03342.9.
Hachmeister
, J.
, Little
, J.
, McGhee
, J.
, Pelayo
, R.
, and Sasarita
, S.
, “Continua of central configurations with a negative mass in the N-body problem
,” Celestial Mech. Dyn. Astron.
115
(4
), 427
–438
(2013
).10.
Kilin
, A. A.
, “Libration points in spaces S2 and L2
,” Regul. Chaotic Dyn.
4
(1
), 91
–103
(1999
).11.
Llibre
, J.
, Moeckel
, R.
, and Simó
, C.
, Central Configurations, Periodic Orbits, and Hamiltonian Systems
, Advanced Courses in Mathematics
(CRM Barcelona, Birkhäuser/Springer
, Basel
, 2015
).12.
Moeckel
, R.
, Celestial Mechanics—Especially Central Configurations
, unpublished lecture notes:
http://www.math.umn.edu/rmoeckel/notes/CMNotes.pdf.13.
Roberts
, G.
, “A continuum of relative equilibria in the five-body problem
,” Phys. D
127
(3-4
), 141
–145
(1999
).14.
Smale
, S.
, “Mathematical problems for the next century
,” Math. Intell.
20
(2
), 7
–15
(1998
).15.
Zhu
, S.
, “Eulerian relative equilibria of the curved 3-body problems in S2
,” Proc. Am. Math. Soc.
142
(8
), 2837
–2848
(2014
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.