By investigating the SU(2) Yang-Mills matrix model coupled to fundamental fermions in the adiabatic limit, we demonstrate quantum critical behaviour at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. As a consequence of our analysis, we show that 2-color quantum chromodynamics coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase.

1.
M. G.
Alford
,
A.
Schmitt
,
K.
Rajagopal
, and
T.
Schäfer
,
Rev. Mod. Phys.
80
,
1455
(
2008
); e-print arXiv:0709.4635 [hep-ph].
2.
A. P.
Balachandran
,
S.
Vaidya
, and
A. R.
de Queiroz
,
Mod. Phys. Lett. A
30
(
16
),
1550080
(
2015
).
3.
A. P.
Balachandran
,
A.
de Queiroz
, and
S.
Vaidya
,
Int. J. Mod. Phys. A
30
(
09
),
1550064
(
2015
).
4.
I. M.
Singer
,
Commun. Math. Phys.
60
,
7
(
1978
).
5.
M. S.
Narasimhan
and
T. R.
Ramadas
,
Commun. Math. Phys.
67
,
121
(
1979
).
6.
T.
Schäfer
,
Phys. Rev. D
62
(
5
),
094007
(
2000
).
7.
M. V.
Berry
, in
Geometric Phases in Physics
, edited by
A.
Shapere
and
F.
Wilczek
(
World Scientific
,
Singapore
,
1990
), p.
14
.
8.
A.
Bohm
,
B.
Kendrick
,
M. E.
Loewe
, and
L. J.
Boya
,
J. Math. Phys.
33
,
977
(
1992
).
9.
S.
Sachdev
,
Quantum Phase Transitions
(
Cambridge University Press
,
Cambridge
,
2011
).
10.
A. T.
Rezakhani
,
D. F.
Abasto
,
D. A.
Lidar
, and
P.
Zanardi
,
Phys. Rev. A
82
,
012321
(
2010
).
11.
A.
Dutta
,
G.
Aeppli
,
B. K.
Chakrabarti
,
U.
Divakaran
,
T. F.
Rosenbaum
, and
D.
Sen
,
Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information
(
Cambridge University Press
,
Cambridge
,
2015
).
12.
D.
Sen
,
J. Math. Phys.
27
,
472
(
1986
).
13.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
Berlin
,
1995
).
14.
M.
Pandey
and
S.
Vaidya
, “
Anomalies in a matrix model of SU(2) Yang-Mills Theory coupled with fermions
,” (unpublished).
16.
E. L.
Rees
,
Am. Math. Mon.
29
,
2
(
1922
).
17.
V. V.
Prasolov
,
Polynomials
(
Springer-Verlag
,
Berlin
,
2010
).
18.
T.
Iwai
,
J. Phys. A: Math. Theor.
43
,
415204
(
2010
).
19.
K.
Meetz
,
Nuovo Cimento
34
,
690
(
1964
).
20.
H.
Narnhofer
,
Acta Physica Austriaca
40
,
306322
(
1974
).
21.
J. B.
Kogut
,
M. A.
Stephanov
,
D.
Toublan
,
J. J. M.
Verbaarschot
, and
A.
Zhitnitsky
,
Nucl. Phys. B
582
,
477
(
2000
).
22.

In Ref. 6, this is called “grand angular momentum.”

You do not currently have access to this content.