We consider strained graphene, modelled by the two-dimensional massive Dirac operator, with potentials corresponding to charge distributions with vanishing total charge, non-vanishing dipole moment and finitely many point charges of subcritical coupling constants located in the graphene sheet. We show that the bound state energies accumulate exponentially fast at the edges of the spectral gap by determining the leading order of the accumulation rate.

1.
Cuenin
,
J.-C.
and
Siedentop
,
H.
, “
Dipoles in graphene have infinitely many bound states
,”
J. Math. Phys.
55
,
122304
(
2014
).
2.
Cycon
,
H. L.
,
Froese
,
R. G.
,
Kirsch
,
W.
, and
Simon
,
B.
,
Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry
, Texts and Monographs in Physics (
Springer-Verlag
,
Berlin
,
1987
).
3.
De Martino
,
A.
,
Klöpfer
,
D.
,
Matrasulov
,
D.
, and
Egger
,
R.
, “
Electric-dipole-induced universality for Dirac fermions in graphene
,”
Phys. Rev. Lett.
112
,
186603
(
2014
).
4.
Evans
,
W. D.
,
Lewis
,
R. T.
,
Siedentop
,
H.
, and
Solovej
,
J. P.
, “
Counting eigenvalues using coherent states with an application to Dirac and Schrödinger operators in the semi-classical limit
,”
Ark. Mat.
34
,
265
283
(
1996
).
5.
Kirsch
,
W.
and
Simon
,
B.
, “
Corrections to the classical behavior of the number of bound states of Schrödinger operators
,”
Ann. Phys.
183
,
122
130
(
1988
).
6.
McLachlan
,
N. W.
,
Theory and Application of Mathieu Functions
(
Clarenden Press
,
Oxford
,
1947
).
7.
Morozov
,
S.
and
Müller
,
D.
, “
Lieb-Thirring and Cwickel-Lieb-Rozenblum inequalities for perturbed graphene with a Coulomb impurity
,”
J.Spec.Theory
(unpublished); available at http://www.ems-ph.org/journals/forthcoming.php?jrn=jst.
8.
Morozov
,
S.
and
Müller
,
D.
, “
On the virtual levels of positively projected massless Coulomb-Dirac operators
,” preprint arXiv:1607.08902 (
2016
).
9.
Müller
,
D.
, “
Minimax principles, Hardy-Dirac inequalities and operator cores for two and three dimensional Coulomb-Dirac operators
,”
Doc. Math.
21
,
1151
1169
(
2016
); avaialble at https://www.math.uni-bielefeld.de/documenta/vol-21/30.html.
10.
Rademacher
,
S.
and
Siedentop
,
H.
, “
Accumulation rate of bound states of dipoles in graphene
,”
J. Math. Phys.
57
,
042105
(
2016
).
11.
Reed
,
M.
and
Simon
,
B.
,
Fourier Analysis, Self-Adjointness
, Methods of Modern Mathematical Physics Vol. 2 (
Academic Press
,
San Diego
,
1975
).
12.
Reed
,
M.
and
Simon
,
B.
,
Analysis of Operators
, Methods of Modern Mathematical Physics Vol. 4 (
Academic Press
,
San Diego
,
1978
).
13.
Schmüdgen
,
K.
,
Unbounded Self-Adjoint Operators on Hilbert Space
, Graduate Texts in Mathematics (
Springer
,
Dordrecht
,
2012
).
14.
Seiler
,
E.
and
Simon
,
B.
, “
Bounds in the Yukawa2 quantum field theory: Upper bound on the pressure, Hamiltonian bound and linear lower bound
,”
Commun. Math. Phys.
45
,
99
114
(
1975
).
15.
Shargorodsky
,
E.
, “
On negative eigenvalues of two-dimensional Schrödinger operators
,”
Proc. London Math. Soc.
108
,
441
483
(
2014
).
16.
Thaller
,
B.
, “
The Dirac equation
,”
Text and Monographics in Physics
(
Springer-Verlag
,
Berlin
,
1992
).
17.
Vozmediano
,
M. A. H.
,
Katsnelson
,
M. I.
, and
Guinea
,
F.
, “
Gauge fields in graphene
,”
Phys. Rep.
496
,
109
148
(
2010
).
18.
Weidmann
,
J.
, “
Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen
,”
Math. Z.
119
,
349
373
(
1971
).
19.
Weidmann
,
J.
,
Lineare Operatoren in Hilberträumen. Teil II: Anwendungen
(
B.G. Teubner
,
Stuttgart
,
2003
).
You do not currently have access to this content.