In this paper, we study a particular Painlevé V (denoted PV) that arises from multi-input-multi-output wireless communication systems. Such PV appears through its intimate relation with the Hankel determinant that describes the moment generating function (MGF) of the Shannon capacity. This originates through the multiplication of the Laguerre weight or the gamma density xαex, x > 0, for α > −1 by (1 + x/t)λ with t > 0 a scaling parameter. Here the λ parameter “generates” the Shannon capacity; see Chen, Y. and McKay, M. R. [IEEE Trans. Inf. Theory 58, 4594–4634 (2012)]. It was found that the MGF has an integral representation as a functional of y(t) and y′(t), where y(t) satisfies the “classical form” of PV. In this paper, we consider the situation where n, the number of transmit antennas, (or the size of the random matrix), tends to infinity and the signal-to-noise ratio, P, tends to infinity such that s = 4n2/P is finite. Under such double scaling, the MGF, effectively an infinite determinant, has an integral representation in terms of a “lesser” PIII. We also consider the situations where α=k+1/2,kN, and α ∈ {0, 1, 2, …}, λ ∈ {1, 2, …}, linking the relevant quantity to a solution of the two-dimensional sine-Gordon equation in radial coordinates and a certain discrete Painlevé-II. From the large n asymptotic of the orthogonal polynomials, which appears naturally, we obtain the double scaled MGF for small and large s, together with the constant term in the large s expansion. With the aid of these, we derive a number of cumulants and find that the capacity distribution function is non-Gaussian.

1.
Basor
,
E.
and
Chen
,
Y.
, “
Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory
,”
Math. Methods Appl. Sci.
38
,
4840
4851
(
2015
).
2.
Barashenkov
,
I. V.
and
Pelinovsky
,
D. E.
, “
Exact vortex solutions of the complex sine-Gordon theory on the plane
,”
Phys. Lett. B
436
,
117
124
(
1998
).
3.
Chen
,
M.
and
Chen
,
Y.
, “
Singular linear statistics of the Laguerre unitary ensemble and Painlevé. III. Double scaling analysis
,”
J. Math. Phys.
56
,
063506
(
2015
).
4.
Chen
,
M.
,
Chen
,
Y.
, and
Fan
,
E. G.
, “
Perturbed Hankel determinant, correlation function and Painlevé equations
,”
J. Math. Phys.
57
,
023501
(
2016
).
5.
Casini
,
H.
,
Fosco
,
C. D.
, and
Huerta
,
M.
, “
Entanglement and alpha entropies for massive Dirac field in two dimensions
,”
J. Stat. Mech.: Theory Exp.
2005
,
P07007
.
6.
Chen
,
Y.
,
Haq
,
N. S.
, and
McKay
,
M. R.
, “
Random matrix models, double-time Painlevé equations, and wireless relaying
,”
J. Math. Phys.
54
,
063506
(
2013
).
7.
Chen
,
Y.
and
Ismail
,
H. E. M.
, “
Thermodynamic relations of the Hermitian matrix ensembles
,”
J. Phys. A: Math. Gen.
30
,
6633
6654
(
1997
).
8.
Chen
,
Y.
and
Its
,
A.
, “
Painlevé III and a singular linear statistics in Hermitian random matrix ensembles
,”
J. Approximation Theory
162
,
270
297
(
2010
).
9.
Chen
,
Y.
and
Lawrence
,
N.
, “
On the linear statistics of Hermitian random matrices
,”
J. Phys. A: Math. Gen.
31
,
1141
1152
(
1998
).
10.
Chen
,
Y.
and
McKay
,
M. R.
, “
Coulomb fluid, Painlevé transcendents and the information theory of MIMO systems
,”
IEEE Trans. Inf. Theory
58
,
4594
4634
(
2012
).
11.
Chen
,
Y.
and
McKay
,
M. R.
, “
Perturbed Hankel determinants: Applications to the information theory of MIMO wireless communications
,” e-print arXiv:1007.0496 (
2010
).
12.
Clarkson
,
P. A.
, “
The third Painlevé equation and associated special polynomials
,”
J. Phys. A
36
,
9507
9532
(
2003
).
13.
Clarkson
,
P. A.
, “
Special polynomials associated with rational solutions of the fifth Painlevé equation
,”
J. Comput. Appl. Math.
178
,
111
129
(
2005
).
14.
Dyson
,
F. J.
, “
Statistical theory of energy levels of complex systems I-III
,”
J. Math. Phys.
3
,
140
175
(
1962
).
15.
Forrester
,
P. J.
and
Ormerod
,
C. M.
, “
Differential equations for deformed Laguerre polynomials
,”
J. Approximation Theory
162
,
653
677
(
2010
).
16.
Forrester
,
P. J.
and
Witte
,
N. S.
, “
Distribution of the first eigenvalue spacing at the hard edge of the Laguerre unitary ensemble Kyushu
,”
J. Math.
61
,
457
526
(
2007
).
17.
Foschini
,
G. J.
and
Gans
,
M. J.
, “
On limits of wireless communications in a fading environment when using multiple antennas
,”
Wireless Pers. Commun.
6
,
311
335
(
1998
).
18.
Forrester
,
P. J.
and
Witte
,
N. S.
, “
Boundary conditions associated with the Painlevé III′ and V evaluations of some random matrix averages
,”
J. Phys. A: Math. Gen.
39
,
8983
8995
(
2006
).
19.
Gromak
,
V. I.
,
Laine
,
I.
, and
Shimomura
,
S.
,
Painlevé Differential Equations in the Complex Plane
(
Walter de Gruyter
,
2002
), Vol. 28.
20.
Gradshteyn
,
I. S.
and
Ryzhik
,
I. M.
,
Table of Integrals, Series, and Products
, 7th ed. (
Elsevier/Academic Press
,
Amsterdam
,
2007
).
21.
Hachem
,
W.
,
Khorunzhiy
,
O.
,
Loubaton
,
P.
,
Najim
,
J.
, and
Pastur
,
L.
, “
A new approach for mutual information analysis of large dimensional multi-antenna channels
,”
IEEE Trans. Inf. Theory
54
,
3987
4004
(
2008
).
22.
Hisakado
,
M.
, “
Unitary matrix models and Painlevé III
,”
Mod. Phys. Lett. A
11
,
3001
3010
(
1996
).
23.
Jimbo
,
M.
and
Miwa
,
T.
, “
Monodromy perserving deformation of linear ordinary differential equations with rational coefficients, II
,”
Phys. D
2
,
407
448
(
1981
).
24.
Jimbo
,
M.
, “
Monodromy problem and the boundary condition for some Painlevé equations
,”
Publ. Res. Inst. Math. Sci.
18
,
1137
1161
(
1982
).
25.
Kajiwara
,
K.
and
Masuda
,
T.
, “
On the Umemura polynomials for the Painlevé III equation
,”
Phys. Lett. A
260
,
462
467
(
1999
).
26.
Kazakopoulos
,
P.
,
Mertikopoulos
,
P.
,
Moustakas
,
A. L.
, and
Caire
,
G.
, “
Living at the edge: A large deviations approach to the outage MIMO capacity
,”
IEEE Trans. Inf. Theory
57
,
1984
2007
(
2011
).
27.
McKay
,
M. R.
and
Collings
,
I. B.
General capacity bounds for spatially correlated Rician MIMO channels
”,
IEEE Trans. Inf. Theory
51
(
2005
),
3121
3145
.
28.
Mezzadri
,
F.
and
Mo
,
M. Y.
, “
On an average over the Gaussian unitary ensemble
,”
Int. Math. Res. Not.
2009
,
3486
3515
.
29.
Milne
,
A. E.
,
Clarkson
,
P. A.
, and
Bassom
,
A. P.
, “
Backlund transformations and solution Hierarchies for the third Painlevé equation
,”
Stud. Appl. Math.
98
,
139
194
(
1997
).
30.
Murata
,
Y.
, “
Classical solutions of the third Painleve equation
,”
Nagoya Math. J.
139
,
37
65
(
1995
).
31.
Normand
,
J. M.
, “
Calculation of some determinants using the s-shifted factorial
,”
J. Phys. A
37
,
5737
5762
(
2004
).
32.
Okamoto
,
K.
, “
On the τ-function of the Painlevé equations
,”
Phys. D
2
,
525
535
(
1981
).
33.
NIST Handbook of Mathematical Functions
, edited by
Olver
,
F. W. J.
,
Lozier
,
D. W.
,
Boisvert
,
R. F.
, and
Clark
,
C. W.
(
Cambridge University Press
,
2010
).
34.
Osipov
,
V. A.
and
Kanzieper
,
E.
, “
Are bosonic replicas faulty?
,”
Phys. Rev. Lett.
99
,
050602
(
2007
).
35.
Passemier
,
D.
,
Mckay
,
M. R.
, and
Chen
,
Y.
, “
Asymptotic linear spectral statistics for spiked Hermitian random matrix models
,”
J. Stat. Phys.
160
,
120
150
(
2015
).
36.
Periwal
,
V.
and
Shevitz
,
D.
, “
Unitary-matrix models as exactly solvable string theories
,”
Phys. Rev. Lett.
64
,
1326
1329
(
1990
).
37.
Szegö
,
G.
,
Orthogonal Polynomials
, American Mathematical Society Volume 23 (
American Mathematical Society Colloquium Publications
,
New York
,
1939
).
38.
Smith
,
P. J.
,
Roy
,
S.
, and
Shafi
,
M.
, “
Capacity of MIMO systems with semicorrelated flat fading
,”
IEEE Trans. Inf. Theory
49
,
2781
2788
(
2003
).
39.
Telatar
,
I. E.
, “
Capacity of multi-antenna Gaussian channels
,”
Eur. Trans. Telecommun.
10
,
585
595
(
1999
).
40.
Tracy
,
C. A.
and
Widom
,
H.
, “
Level spacing distributions and the Bessel kernel
,”
Commun. Math. Phys.
160
,
289
309
(
1994
).
41.
Tracy
,
C. A.
and
Widom
,
H.
, “
Fredholm determinants, differential equations and matrix models
,”
Commun. Math. Phys.
163
,
33
72
(
1994
).
42.
Tracy
,
C. A.
and
Widom
,
H.
, “
Random unitary matrices, permutations and Painlevé
,”
Commun. Math. Phys.
207
,
665
685
(
1999
).
43.
Tulino
,
A. M.
and
Verdú
,
S.
, “
Asymptotic outage capacity of multiantenna channels
,” in
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
(
IEEE
,
2005
), Vol. 5, pp.
825
828
.
44.
Voros
,
A.
, “
Spectral functions, special functions, and the Selberg zeta function
,”
Commun. Math. Phys.
110
,
439
465
(
1987
).
45.
Whittaker
,
E. T.
and
Watson
,
G. N.
,
A Course of Modern Analysis
, 4th ed. (
Cambridge University Press
,
Cambridge
,
1958
).
46.
Xu
,
S. X.
,
Dai
,
D.
, and
Zhao
,
Y. Q.
, “
Critical edge behavior and the Bessel to Airy transition in the singularly perturbed Laguerre unitary ensemble
,”
Commun. Math. Phys.
332
,
1257
1296
(
2014
).
47.
Zheng
,
L.
and
Tse
,
C. N. D.
, “
Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels
,”
IEEE Trans. Inf. Theory
49
,
1073
1096
(
2003
).
You do not currently have access to this content.