Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. But these random objects are difficult to be visualized geometrically or computed numerically. The current work provides a perturbation approach to approximate these random invariant manifolds. We first discuss the existence of a random invariant manifold for a class of stochastic evolutionary equations. Then, we approximate the random invariant manifold by the invariant manifold of a new system with smooth colored noise (i.e., integrated Ornstein-Uhlenbeck processes). The convergence in a pathwise Wong-Zakai sense is shown.
REFERENCES
1.
Acquistapace
, P.
and Terreni
, B.
, “An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise
,” Stochastic Anal. Appl.
2
(2
), 131
–186
(1984
).2.
Al-azzawi
, S.
, Liu
, J.
, and Liu
, X.
, “Convergence rate of synchronization of systems with additive noise
,” Discrete Contin. Dyn. Syst., Ser. B
22
(2
), 227
–245
(2017
).3.
4.
Bally
, V.
, Millet
, A.
, and Sanz-Sole
, M.
, “Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations
,” Ann. Probab.
23
(1
), 178
–222
(1995
).5.
Boxler
, P.
, “Stochastische zentrumsmannigfaltigkeiten
,” Ph.D. thesis, Institut für Dynamische Systeme, Universitat Bremen
, 1988
.6.
Brzeźniak
, Z.
and Flandoli
, F.
, “Almost sure approximation of Wong-Zakai type for stochastic partial differential equations
,” Stochastic Processes Appl.
55
(2
), 329
–358
(1995
).7.
Brzeźniak
, Z.
, Capinski
, M.
, and Flandoli
, F.
, “A convergence result for stochastic partial differential equations
,” Stochastics
24
(4
), 423
–445
(1988
).8.
Caraballo
, T.
, Duan
, J.
, Lu
, K.
, and Schmalfuss
, B.
, “Invariant manifolds for random and stochastic partial differential equations
,” Adv. Nonlinear Stud.
10
(1
), 23
–52
(2010
).9.
Da Prato
, G.
and Zabczyk
, J.
, Stochastic Equations in Infinite Dimensions
(Cambridge University Press
, 2014
).10.
Duan
, J.
, Lu
, K.
, and Schmalfuss
, B.
, “Invariant manifolds for stochastic partial differential equations
,” Ann. Probab.
31
(4
), 2109
–2135
(2003
).11.
Duan
, J.
, Lu
, K.
, and Schmalfuss
, B.
, “Smooth stable and unstable manifolds for stochastic evolutionary equations
,” J. Dyn. Differ. Equations
16
(4
), 949
–972
(2004
).12.
Duan
, J.
and Wang
, W.
, Effective Dynamics of Stochastic Partial Differential Equations
(Elsevier
, Amsterdam
, 2014
).13.
Evans
, L. C.
and Stroock
, D. W.
, “An approximation scheme for reflected stochastic differential equations
,” Stochastic Processes Appl.
121
(7
), 1464
–1491
(2011
).14.
Gyöngy
, I.
, “On the approximations of stochastic partial differential equations I
,” Stochastics
25
(2
), 59
–85
(1988
).15.
Gyöngy
, I.
, Nualart
, D.
, and Sanz-Sole
, M.
, “Approximations and support theorems in modulus spaces
,” Probab. Theory Relat. Fields
101
(4
), 495
–509
(1995
).16.
Gyöngy
, I.
and Pröhle
, T.
, “On the approximation of stochastic partial differential equations and on Stroock-Varadhan support theorem
,” Comput. Math. Appl.
19
, 65
–70
(1990
).17.
Hairer
, M.
and Pardoux
, E.
, “A Wong-Zakai theorem for stochastic PDEs
,” J. Math. Soc. Jpn.
67
(4
), 1551
–1604
(2015
).18.
Horsthemke
, W.
and Lefever
, R.
, Noise Induced Transitions
(Springer Berlin Heidelberg
, 1984
).19.
Konecny
, F.
, “On Wong-Zakai approximation of stochastic differential equations
,” J. Multivar. Anal.
13
(4
), 605
–611
(1983
).20.
Millet
, A.
and Sanz-Sole
, M.
, “The support of the solution to a hyperbolic SPDE
,” Probab. Theory Relat. Fields
98
(3
), 361
–387
(1994
).21.
Millet
, A.
and Sanz-Sole
, M.
, “Approximation and support theorem for a wave equation in two space dimensions
,” Bernoulli
6
(5
), 887
–915
(2000
).22.
Mohammed
, S.-E. A.
and Scheutzow
, M. K. R.
, “The stable manifold theorem for stochastic differential equations
,” Ann. Probab.
27
(2
), 615
–652
(1999
).23.
Mohammed
, S.-E. A.
, Zhang
, T.
, and Zhao
, H.
, “The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
,” Mem. Am. Math. Soc.
196
(917
), 1
–105
(2008
).24.
Pettersson
, R.
, “Wong-Zakai approximations for reflecting stochastic differential equations
,” Stochastic Anal. Appl.
17
(4
), 609
–617
(1999
).25.
Ren
, J.
and Xu
, S.
, “A transfer principle for multivalued stochastic differential equations
,” J. Funct. Anal.
256
(9
), 2780
–2814
(2009
).26.
Ren
, J.
and Xu
, S.
, “Support theorem for stochastic variational inequalities
,” Bull. Sci. Math.
134
(8
), 826
–856
(2010
).27.
Revuz
, D.
and Yor
, M.
, Continuous Martingales and Brownian Motion
, 3rd ed. (Springer-Verlag
, Berlin
, 1999
).28.
Sun
, X.
, Duan
, J.
, and Li
, X.
, “An impact of noise on invariant manifolds in nonlinear dynamical system
,” J. Math. Phys.
51
(4
), 042702
(2010
).29.
Tessitore
, G.
and Zabczyk
, J.
, “Wong-Zakai approximation of stochastic evolution equations
,” J. Evol. Equations
6
(4
), 621
–655
(2006
).30.
Wong
, E.
and Zakai
, M.
, “On the relation between ordinary and stochastic differential equations
,” Int. J. Eng. Sci.
3
, 213
–229
(1965
).31.
Wong
, E.
and Zakai
, M.
, “On the convergence of ordinary integrals to stochastic integrals
,” Ann. Math. Stat.
36
, 1560
–1564
(1965
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.