Random invariant manifolds are geometric objects useful for understanding complex dynamics under stochastic influences. But these random objects are difficult to be visualized geometrically or computed numerically. The current work provides a perturbation approach to approximate these random invariant manifolds. We first discuss the existence of a random invariant manifold for a class of stochastic evolutionary equations. Then, we approximate the random invariant manifold by the invariant manifold of a new system with smooth colored noise (i.e., integrated Ornstein-Uhlenbeck processes). The convergence in a pathwise Wong-Zakai sense is shown.

1.
Acquistapace
,
P.
and
Terreni
,
B.
, “
An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise
,”
Stochastic Anal. Appl.
2
(
2
),
131
186
(
1984
).
2.
Al-azzawi
,
S.
,
Liu
,
J.
, and
Liu
,
X.
, “
Convergence rate of synchronization of systems with additive noise
,”
Discrete Contin. Dyn. Syst., Ser. B
22
(
2
),
227
245
(
2017
).
3.
Arnold
,
L.
,
Random Dynamical Systems
(
Springer
,
New York
,
1998
).
4.
Bally
,
V.
,
Millet
,
A.
, and
Sanz-Sole
,
M.
, “
Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations
,”
Ann. Probab.
23
(
1
),
178
222
(
1995
).
5.
Boxler
,
P.
, “
Stochastische zentrumsmannigfaltigkeiten
,” Ph.D. thesis,
Institut für Dynamische Systeme, Universitat Bremen
,
1988
.
6.
Brzeźniak
,
Z.
and
Flandoli
,
F.
, “
Almost sure approximation of Wong-Zakai type for stochastic partial differential equations
,”
Stochastic Processes Appl.
55
(
2
),
329
358
(
1995
).
7.
Brzeźniak
,
Z.
,
Capinski
,
M.
, and
Flandoli
,
F.
, “
A convergence result for stochastic partial differential equations
,”
Stochastics
24
(
4
),
423
445
(
1988
).
8.
Caraballo
,
T.
,
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Invariant manifolds for random and stochastic partial differential equations
,”
Adv. Nonlinear Stud.
10
(
1
),
23
52
(
2010
).
9.
Da Prato
,
G.
and
Zabczyk
,
J.
,
Stochastic Equations in Infinite Dimensions
(
Cambridge University Press
,
2014
).
10.
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Invariant manifolds for stochastic partial differential equations
,”
Ann. Probab.
31
(
4
),
2109
2135
(
2003
).
11.
Duan
,
J.
,
Lu
,
K.
, and
Schmalfuss
,
B.
, “
Smooth stable and unstable manifolds for stochastic evolutionary equations
,”
J. Dyn. Differ. Equations
16
(
4
),
949
972
(
2004
).
12.
Duan
,
J.
and
Wang
,
W.
,
Effective Dynamics of Stochastic Partial Differential Equations
(
Elsevier
,
Amsterdam
,
2014
).
13.
Evans
,
L. C.
and
Stroock
,
D. W.
, “
An approximation scheme for reflected stochastic differential equations
,”
Stochastic Processes Appl.
121
(
7
),
1464
1491
(
2011
).
14.
Gyöngy
,
I.
, “
On the approximations of stochastic partial differential equations I
,”
Stochastics
25
(
2
),
59
85
(
1988
).
15.
Gyöngy
,
I.
,
Nualart
,
D.
, and
Sanz-Sole
,
M.
, “
Approximations and support theorems in modulus spaces
,”
Probab. Theory Relat. Fields
101
(
4
),
495
509
(
1995
).
16.
Gyöngy
,
I.
and
Pröhle
,
T.
, “
On the approximation of stochastic partial differential equations and on Stroock-Varadhan support theorem
,”
Comput. Math. Appl.
19
,
65
70
(
1990
).
17.
Hairer
,
M.
and
Pardoux
,
E.
, “
A Wong-Zakai theorem for stochastic PDEs
,”
J. Math. Soc. Jpn.
67
(
4
),
1551
1604
(
2015
).
18.
Horsthemke
,
W.
and
Lefever
,
R.
,
Noise Induced Transitions
(
Springer Berlin Heidelberg
,
1984
).
19.
Konecny
,
F.
, “
On Wong-Zakai approximation of stochastic differential equations
,”
J. Multivar. Anal.
13
(
4
),
605
611
(
1983
).
20.
Millet
,
A.
and
Sanz-Sole
,
M.
, “
The support of the solution to a hyperbolic SPDE
,”
Probab. Theory Relat. Fields
98
(
3
),
361
387
(
1994
).
21.
Millet
,
A.
and
Sanz-Sole
,
M.
, “
Approximation and support theorem for a wave equation in two space dimensions
,”
Bernoulli
6
(
5
),
887
915
(
2000
).
22.
Mohammed
,
S.-E. A.
and
Scheutzow
,
M. K. R.
, “
The stable manifold theorem for stochastic differential equations
,”
Ann. Probab.
27
(
2
),
615
652
(
1999
).
23.
Mohammed
,
S.-E. A.
,
Zhang
,
T.
, and
Zhao
,
H.
, “
The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations
,”
Mem. Am. Math. Soc.
196
(
917
),
1
105
(
2008
).
24.
Pettersson
,
R.
, “
Wong-Zakai approximations for reflecting stochastic differential equations
,”
Stochastic Anal. Appl.
17
(
4
),
609
617
(
1999
).
25.
Ren
,
J.
and
Xu
,
S.
, “
A transfer principle for multivalued stochastic differential equations
,”
J. Funct. Anal.
256
(
9
),
2780
2814
(
2009
).
26.
Ren
,
J.
and
Xu
,
S.
, “
Support theorem for stochastic variational inequalities
,”
Bull. Sci. Math.
134
(
8
),
826
856
(
2010
).
27.
Revuz
,
D.
and
Yor
,
M.
,
Continuous Martingales and Brownian Motion
, 3rd ed. (
Springer-Verlag
,
Berlin
,
1999
).
28.
Sun
,
X.
,
Duan
,
J.
, and
Li
,
X.
, “
An impact of noise on invariant manifolds in nonlinear dynamical system
,”
J. Math. Phys.
51
(
4
),
042702
(
2010
).
29.
Tessitore
,
G.
and
Zabczyk
,
J.
, “
Wong-Zakai approximation of stochastic evolution equations
,”
J. Evol. Equations
6
(
4
),
621
655
(
2006
).
30.
Wong
,
E.
and
Zakai
,
M.
, “
On the relation between ordinary and stochastic differential equations
,”
Int. J. Eng. Sci.
3
,
213
229
(
1965
).
31.
Wong
,
E.
and
Zakai
,
M.
, “
On the convergence of ordinary integrals to stochastic integrals
,”
Ann. Math. Stat.
36
,
1560
1564
(
1965
).
You do not currently have access to this content.