We present a conjectured family of symmetric informationally complete positive operator valued measures which have an additional symmetry group whose size is growing with the dimension. The symmetry group is related to Fibonacci numbers, while the dimension is related to Lucas numbers. The conjecture is supported by exact solutions for dimensions d = 4, 8, 19, 48, 124, and 323 as well as a numerical solution for dimension d = 844.

1.
G.
Zauner
, “
Grundzüge einer nichtkommutativen Designtheorie
,” Ph.D. thesis,
Universität Wien
,
1999
.
2.
G.
Zauner
, “
Quantum designs: Foundations of a non-commutative design theory
,”
Int. J. Quantum Inf.
9
,
445
508
(
2011
).
3.
J. M.
Renes
,
R.
Blume-Kohout
,
A. J.
Scott
, and
C. M.
Caves
, “
Symmetric informationally complete quantum measurements
,”
J. Math. Phys.
45
,
2171
(
2004
).
4.
A. J.
Scott
and
M.
Grassl
, “
Symmetric informationally complete positive-operator-valued measures: A new computer study
,”
J. Math. Phys.
51
,
042203
(
2010
).
5.
A. J.
Scott
, “
SICs: Extending the list of solutions
,” e-print arXiv:1703.03993 [quant-ph] (
2017
).
6.
C. A.
Fuchs
,
M. C.
Hoang
, and
B. C.
Stacey
, “
The SIC question: History and state of play
,”
Axioms
6
,
21
(
2017
).
7.
D. M.
Appleby
, “
Symmetric informationally complete-positive operator valued measures and the extended Clifford group
,”
J. Math. Phys.
46
,
052107
(
2005
).
8.
M.
Grassl
, “
Tomography of quantum states in small dimensions
,”
Electron. Notes Discrete Math.
20
,
151
164
(
2005
), Workshop on Discrete Tomography and its Applications New York, USA, June 2005.
9.
M.
Grassl
and
S.
Waldron
, “
Computing projective symmetries of frames
” (unpublished).
10.
P.
Busch
,
P.
Lahti
,
J.-P.
Pellonpää
, and
K.
Ylinen
,
Quantum Measurement
(
Springer International Publishing
,
Switzerland
,
2016
).
11.
Finite Frames: Theory and Applications
, edited by
P. G.
Casazza
and
G.
Kutyniok
(
Birkhäuser
,
Boston, USA
,
2013
).
12.
C.
Godsil
,
Algebraic Combinatorics
(
Chapman & Hall
,
New York, USA
,
1993
).
13.
A. J.
Scott
, “
Tight informationally complete quantum measurements
,”
J. Phys. A: Math. Gen.
39
,
13507
13530
(
2006
).
14.
S. G.
Hoggar
, “
64 lines from a quaternionic polytope
,”
Geom. Dedicata
69
,
287
289
(
1998
).
15.
The on-line encyclopedia of integer sequences
,” published electronically at https://oeis.org, edited by
N. J. A.
Sloane
,
2010
.
16.
R. L.
Graham
,
D. E.
Knuth
, and
O.
Patashnik
,
Concrete Mathematics: A Foundation for Computer Science
, 2nd ed. (
Addison-Wesley
,
Boston, MA, USA
,
1994
).
17.
M.
Appleby
,
S.
Flammia
,
G.
McConnell
, and
J.
Yard
, “
Generating ray class fields of real quadratic fields via complex equiangular lines
,” e-print arXiv:1604.06098 [math.NT] (
2016
).
18.
I.
Bengtsson
, “
The number behind the simplest SIC–POVM
,”
Found. Phys.
47
,
1031
1041
(
2017
).
20.
D. M.
Appleby
,
I.
Bengtsson
,
S.
Brierley
,
Å.
Ericsson
,
M.
Grassl
, and
J.-Å
Larsson
, “
Systems of imprimitivity for the Clifford group
,”
Quantum Inf. Comput.
14
,
339
360
(
2014
); e-print arXiv:1210.1055 [quant-ph].
21.
W.
Bosma
,
J. J.
Cannon
, and
C.
Playoust
, “
The Magma algebra system I: The user language
,”
J. Symbolic Comput.
24
,
235
265
(
1997
).
22.
M.
Appleby
,
I.
Bengtsson
,
I.
Dumitru
, and
S.
Flammia
, “
Dimension towers of SICs. I. Aligned SICs and embedded tight frames
,”
J. Math. Phys.
(to be published); preprint arXiv:1707.09911 [quant-ph] (
2017
).
23.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
, 2nd ed. (
Cambridge University Press
,
2013
).
24.
M.
Appleby
,
T.-Y.
Chien
,
S.
Flammia
, and
S.
Waldron
, “
Constructing exact symmetric informationally complete measurements from numerical solutions
,” e-print arXiv:1703.05981 [quant-ph] (
2017
).
25.
M.
Grassl
,
A. J.
Scott
, and
U.
Seyfarth
, “
Symmetries of Weyl-Heisenberg SIC-POVMs
” (unpublished).
26.
L.
Euler
, “
Observationes analyticæ
,” Novi commentarii academiæ scientiarum Petropolitanæ, 124–143 (1765), reprinted in his Opera Omnia, series 1, volume 15, 50–69.

Supplementary Material

You do not currently have access to this content.