We discuss the Schrödinger equation with singular potentials. Our focus is non-relativistic Schrödinger operators H with scalar potentials V defined on Rd, hence covering such quantum systems as atoms, molecules, and subatomic particles whether free, bound, or localized. By a “singular potential” V, we refer to the case when the corresponding Schrödinger operators H, with their natural minimal domain in L2(Rd), are not essentially self-adjoint. Since V is assumed real valued, the corresponding Hermitian symmetric operator H commutes with the conjugation in L2(Rd), and so (by von Neumann’s theorem), H has deficiency indices (n, n). The case of singular potentials V refers to when n > 0. Hence, by von Neumann’s theory, we know the full variety of all the self-adjoint extensions. Since the Trotter formula is restricted to the case when n = 0, and here n > 0, two questions arise: (i) existence of the Trotter limit and (ii) the nature of this limit. We answer (i) affirmatively. Our answer to (ii) is that when n > 0, the Trotter limit is a strongly continuous contraction semigroup; so it is not time-reversible.

1.
Capri
,
A. Z.
,
Nonrelativistic Quantum Mechanics
, 3rd ed. (
World Scientific
,
2002
).
2.
Crandall
,
M. G.
and
Phillips
,
R. S.
, “
On the extension problem for dissipative operators
,”
J. Funct. Anal.
2
,
147
176
(
1968
).
3.
Feynman
,
R. P.
, “
The concept of probability in quantum mechanics
,” in
Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950
(
University of California Press
,
Berkeley and Los Angeles
,
1951
), pp.
533
541
.
4.
Feynman
,
R. P.
, “
An operator calculus having applications in quantum electrodynamics
,”
Phys. Rev.
84
(
2
),
108
128
(
1951
).
5.
Feynman
,
R. P.
and
Hibbs
,
A. R.
,
Quantum Mechanics and Path Integrals
, Emended edition, Emended and With a Preface by Daniel F. Styer (
Dover Publications, Inc.
,
Mineola, NY
,
2010
).
6.
Jorgensen
,
P. E. T.
and
Klink
,
W. H.
, “
Quantum mechanics and nilpotent groups. I. The curved magnetic field
,”
Publ. Res. Inst. Math. Sci.
21
(
5
),
969
999
(
1985
).
7.
Jorgensen
,
P.
,
Pedersen
,
S.
, and
Tian
,
F.
, “
Spectral theory of multiple intervals
,”
Trans. Am. Math. Soc.
367
(
3
),
1671
1735
(
2015
).
8.
Jørgensen
,
P. E. T.
, “
Representations of differential operators on a Lie group
,”
J. Funct. Anal.
20
(
2
),
105
135
(
1975
).
9.
Jorgensen
,
P. E. T.
, “
Unbounded Hermitian operators and relative reproducing kernel Hilbert space
,”
Cent. Eur. J. Math.
8
(
3
),
569
596
(
2010
).
10.
Jorgensen
,
P. E. T.
and
Pearse
,
E. P. J.
, “
Symmetric pairs and self-adjoint extensions of operators, with applications to energy networks
,”
Complex Anal. Oper. Theory
10
(
7
),
1535
1550
(
2016
).
11.
Kato
,
T.
, “
Fundamental properties of Hamiltonian operators of Schrödinger type
,”
Trans. Am. Math. Soc.
70
,
195
211
(
1951
).
12.
Muldowney
,
P.
,
A Modern Theory of Random Variable: With Applications in Stochastic Calculus, Financial Mathematics, and Feynman Integration
(
John Wiley & Sons, Inc.
,
New Jersey
,
2012
).
13.
Nathanson
,
E. S.
and
Jørgensen
,
P. E. T.
, “
A global solution to the Schrödinger equation: From Henstock to Feynman
,”
J. Math. Phys.
56
(
9
),
092102
(
2015
).
14.
Nelson
,
E.
, “
Feynman integrals and the Schrödinger equation
,”
J. Math. Phys.
5
,
332
343
(
1964
).
15.
Nelson
,
E.
,
Topics in Dynamics. I: Flows Notes
(
Princeton University Press
,
1969
).
16.
Phelps
,
R. R.
,
Lectures on Choquet’s Theorem
(
D. Van Nostrand Company, Inc.
,
Princeton, N.J., Toronto, Ontario, London
,
1966
).
17.
Phelps
,
R. R.
, “
Theorems of Krein-Milman type for certain convex sets of functions and operators
,”
Ann. Inst. Fourier
20
(
2
),
45
54
(
1970
).
18.
Phillips
,
R. S.
, “
Dissipative operators and hyperbolic systems of partial differential equations
,”
Trans. Am. Math. Soc.
90
(
2
),
193
254
(
1959
).
19.
Powers
,
R. T.
and
Radin
,
C.
, “
Average boundary conditions in Cauchy problems
,”
J. Funct. Anal.
23
(
1
),
23
32
(
1976
).
20.
Ralph
,
H.
,
Theory of Integration
, Butterworths Mathematical Texts (
Butterworths
,
London
,
1963
).
21.
Simon
,
B.
and
Reed
,
M.
,
Methods of Modern Mathematical Physics: Functional Analysis
(
Butterworth & Co Publishers Ltd.
,
New York, London
,
1972
), Vol. I.
22.
Simon
,
B.
and
Reed
,
M.
,
Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness
(
Academic Press Inc., Elsevier
,
1975
), Vol. II.
23.
von Neumann
,
J.
, “
Allgemeine eigenwerttheorie hermitischer funktionaloperatoren
,”
Math. Ann.
102
,
49
131
(
1929
).
You do not currently have access to this content.