The canonical form of Matrix Product States (MPS) and the associated fundamental theorem, which relates different MPS representations of a state, are the theoretical framework underlying many of the analytical results derived through MPS, such as the classification of symmetry-protected phases in one dimension. Yet, the canonical form is only defined for MPS without non-trivial periods and thus cannot fully capture paradigmatic states such as the antiferromagnet. Here, we introduce a new standard form for MPS, the irreducible form, which is defined for arbitrary MPS, including periodic states, and show that any tensor can be transformed into a tensor in irreducible form describing the same MPS. We then prove a fundamental theorem for MPS in irreducible form: If two tensors in irreducible form give rise to the same MPS, then they must be related by a similarity transform, together with a matrix of phases. We provide two applications of this result: an equivalence between the refinement properties of a state and the divisibility properties of its transfer matrix, and a more general characterisation of tensors that give rise to matrix product states with symmetries.

1.
F.
Verstraete
,
V.
Murg
, and
J. I.
Cirac
,
Adv. Phys.
57
,
143
(
2008
).
3.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
,
Commun. Math. Phys.
144
,
443
(
1992
).
4.
5.
D.
Perez-Garcia
,
F.
Verstraete
,
M. M.
Wolf
, and
J. I.
Cirac
,
Quantum Inf. Comput.
7
,
401
(
2007
).
6.
D.
Pérez-García
,
M. M.
Wolf
,
M.
Sanz
,
F.
Verstraete
, and
J. I.
Cirac
,
Phys. Rev. Lett.
100
,
167202
(
2008
).
7.
X.
Chen
,
Z.-C.
Gu
, and
X.-G.
Wen
,
Phys. Rev. B
83
,
035107
(
2011
).
8.
N.
Schuch
,
D.
Pérez-García
, and
I.
Cirac
,
Phys. Rev. B
84
,
165139
(
2011
).
9.
F.
Pollmann
,
A. M.
Turner
,
E.
Berg
, and
M.
Oshikawa
,
Phys. Rev. B
81
,
064439
(
2010
).
10.
J. I.
Cirac
,
D.
Perez-Garcia
,
N.
Schuch
, and
F.
Verstraete
,
Ann. Phys.
378
,
100
(
2017
).
11.
M. M.
Wolf
,
Quantum Channels and Operations
, Unpublished Lecture Notes,
2012
.
12.
A.
Cadarso
,
M.
Sanz
,
M. M.
Wolf
,
J. I.
Cirac
, and
D.
Perez-Garcia
,
Phys. Rev. B
87
,
035114
(
2013
).
13.
G.
De las Cuevas
,
T. S.
Cubitt
,
J. I.
Cirac
,
M. M.
Wolf
, and
D.
Perez-Garcia
,
J. Math. Phys.
57
,
071902
(
2016
).
14.
G.
De las Cuevas
,
N.
Schuch
,
D.
Perez-Garcia
, and
J. I.
Cirac
, e-print arXiv:1708.00880 (
2017
).
15.
N.
Bultinck
,
M.
Mariën
,
D. J.
Williamson
,
M. B.
Şahinoğlu
,
J.
Haegeman
, and
F.
Verstraete
,
Ann. Phys.
378
,
183
(
2017
); e-print arXiv:1511.08090.
16.

Strictly speaking, this is a family of matrix product vectors,10 but we shall refer to them as matrix product states in this paper.

You do not currently have access to this content.