4-dimensional spaces equipped with 2-dimensional (complex holomorphic or real smooth) completely integrable distributions are considered. The integral manifolds of such distributions are totally null and totally geodesics 2-dimensional surfaces which are called the null strings. Properties of congruences (foliations) of such 2-surfaces are studied. Some relations between properties of congruences of null strings, Petrov-Penrose types of the SD Weyl spinor, and algebraic types of the traceless Ricci tensor are analyzed.

1.
Alekseevsky
,
D. V.
,
Medori
,
C.
, and
Tomassini
,
A.
, “
Homogeneous para-Kähler Einstein manifolds
,”
Russ. Math. Surv.
64
(
1
),
1
(
2009
).
2.
Boyer
,
C. P.
,
Finley
 III,
J. D.
, and
Plebański
,
J. F.
, “
Complex generel relativity, H and HH spaces–a survey of one approach
,” in
General Relativity and Gravitation
, Einstein Memorial Volume, edited by
Held
,
A.
(
Plenum
,
New York
,
1980
), Vol. 2. pp.
241
281
.
3.
Chaichi
,
M.
,
García-Río
,
E.
, and
Matsushita
,
Y.
, “
Curvature properties of four-dimensional Walker metrics
,”
Classical Quantum Gravity
22
,
559
(
2005
).
4.
Chudecki
,
A.
, “
On some examples of para-Hermite and para-Kähler Einstein spaces with Λ0
,”
J. Geom. Phys.
112
,
175
196
(
2017
).
5.
Chudecki
,
A.
, “
Classification of the traceless Ricci tensor in 4-dimensional pseudo-Riemannian spaces of neutral signature
,”
Acta Phys. Pol., B
48
(
1
),
53
74
(
2017
).
6.
Chudecki
,
A.
and
Przanowski
,
M.
, “
From hyperheavenly spaces to Walker and Osserman spaces: I
,”
Classical Quantum Gravity
25
,
145010
(
2008
).
7.
Flaherty
,
E. J.
,
Hermitian and Kählerian Geometry in Relativity, Lecture Notes in Physics
(
Springer-Verlag
,
Berlin
,
1976
).
8.
Goldberg
,
J. N.
and
Sachs
,
R. K.
, “
A theorem on Petrov types
,”
Acta Phys. Pol.
22
,
13
(
1962
).
9.
Law
,
P. R.
and
Matsushita
,
Y.
, “
Real AlphaBeta-geometries and Walker geometry
,”
J. Geom. Phys.
65
,
35
44
(
2013
).
10.
Nurowski
,
P.
and
An
,
D.
, “
Twistor space for rolling bodies
,”
Commun. Math. Phys.
326
(
2
),
393
414
(
2013
).
11.
Nurowski
,
P.
,
Bor
,
G.
, and
Lamoneda
,
L. H.
, “
The dancing metric, G2-symmetry and projective rolling
,” e-print arXiv:1506.00104.
12.
Nurowski
,
P.
and
Taghavi-Chabert
,
A.
, “
A Goldberg-Sachs theorem in dimension three
,”
Classical Quantum Gravity
32
,
115009
(
2015
).
13.
Nurowski
,
P.
and
Trautman
,
A.
, “
Robinson manifolds as the Lorentzian analogs of Hermite manifolds
,”
Differ. Geom. Appl.
17
,
175
195
(
2002
).
14.
Penrose
,
R.
, “
A spinor approach to general relativity
,”
Ann. Phys.
10
,
171
(
1960
).
15.
Pirani
,
F. A. E.
,
Introduction to Gravitational Radiation Theory
, in Lectures in General Relativity Theory (
Brandeis Summer Institute, Prentice-Hall, Inc.
,
1964
).
16.
Plebański
,
J. F.
,
Spinors, Tetrads and Forms
(
Centro de Investigacion y Estudios Avanzados del IPN
,
Mexico
,
1974
), Vol. 14, unpublished monograph.
17.
Plebański
,
J. F.
, “
The algebraic structure of the tensor of matter
,”
Acta Phys. Pol.
26
,
963
1020
(
1964
).
18.
Plebański
,
J. F.
, “
The spinorial and helicity formalisms of Riemannian structures in complex and real four dimensions
,” preprint of Centro de Investigación y de Estudios Avanzados del IPN, México D.F., México (
1980
).
19.
Plebański
,
J. F.
and
Hacyan
,
S.
, “
Null geodesic surfaces and Goldberg–Sachs theorem in complex Riemannian spaces
,”
J. Math. Phys.
16
,
2403
(
1975
).
20.
Plebański
,
J. F.
and
Krasiński
,
A.
,
An Introduction to General Relativity and Cosmology
(
Cambridge University Press
,
2006
).
21.
Plebański
,
J. F.
and
Przanowski
,
M.
, “
Null tetrad, spinor and helicity formalisms for all 4-dimensional Riemannian manifolds. I. Null tetrads and spinors
,”
Acta Phys. Pol., B
19
,
805
(
1988
).
22.
Plebański
,
J. F.
and
Rózga
,
K.
, “
The optics of null strings
,”
J. Math. Phys.
25
,
1930
(
1984
).
23.
Przanowski
,
M.
, “
Remarks concerning the geometry of null strings
,”
Acta Phys. Pol., B
11
,
945
(
1979
).
24.
Przanowski
,
M.
,
Formański
,
S.
, and
Chudecki
,
A.
, “
Notes on para-Hermite-Einstein spacetimes
,”
Int. J. Geom. Methods Mod. Phys.
9
(
1
),
1250008
(
2012
).
25.
Przanowski
,
M.
and
Plebański
,
J. F.
, “
Generalized Goldberg-Sachs theorems in complex and real space-times. I
,”
Acta Phys. Pol.
B10
,
485
(
1979
).
26.
Przanowski
,
M.
and
Plebański
,
J. F.
, “
Generalized Goldberg-Sachs theorems in complex and real space-times II
,”
Acta Phys. Pol., B
10
,
573
(
1979
).
27.
Rod Gover
,
A.
,
Denson Hill
,
C.
, and
Nurowski
,
P.
, “
Sharp version of the Goldberg-Sachs theorem
,”
Ann. Mat. Pura Appl.
190
(
2
),
295
340
(
2011
).
28.
Robinson
,
I.
and
Rózga
,
K.
, “
Congruences of null strings in complex space-times and some Cauchy-Kovalevski-like problems
,”
J. Math. Phys.
25
,
1941
(
1984
).
29.
Szereszewski
,
A.
and
Tafel
,
J.
, “
Solutions of the Rarita-Schwinger equation in Einstein spaces
,”
Phys. Lett. A
297
,
359
362
(
2002
).
30.
Taghavi-Chabert
,
A.
, “
The complex Goldberg-Sachs theorem in higher dimensions
,”
J. Geom. Phys.
62
(
5
),
981
1012
(
2012
).
31.
Trautman
,
A.
, “
Robinson manifolds and Cauchy-Riemann spaces
,”
Classical Quantum Gravity
19
,
R1
(
2002
).
32.
Walker
,
A. G.
, “
Canonical form for a Riemannian space with a parallel field of null planes
,”
Q. J. Math.
1
,
69
(
1950
).
You do not currently have access to this content.