In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to two-dimensional hydrodynamic reductions in a generic case.

1.
Bogdanov
,
L. V.
and
Pavlov
,
M. V.
, “
Linearly degenerate hierarchies of quasiclassical SDYM type
,”
J. Math. Phys.
58
,
093505
(
2017
).
2.
Bogoyavlenskii
,
O.
, “
Breaking solitons in 2 + 1-dimensional integrable equations
,”
Russ. Math. Surv.
45
(
4
),
1
86
(
1990
).
3.
Dubrovin
,
B. A.
and
Novikov
,
S. P.
, “
Hydrodynamical formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method
,”
Sov. Math. Dokl.
27
,
665
669
(
1983
);
Dubrovin
,
B. A.
and
Novikov
,
S. P.
, “
Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory
,”
Russ. Math. Surv.
44
,
35
124
(
1989
).
4.
Ferapontov
,
E. V.
and
Khusnutdinova
,
K. R.
, “
On integrability of (2+1)-dimensional quasilinear systems
,”
Commun. Math. Phys.
248
(
1
),
187
206
(
2004
);
Ferapontov
,
E. V.
and
Khusnutdinova
,
K. R.
, “
The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type
,”
J. Phys. A: Math. Gen.
37
(
8
),
2949
2963
(
2004
).
5.
Ferapontov
,
E. V.
and
Khusnutdinova
,
K. R.
, “
Hydrodynamic reductions of multidimensional dispersionless PDEs: The test for integrability
,”
J. Math. Phys.
45
(
6
),
2365
2377
(
2004
).
6.
Ferapontov
,
E. V.
,
Khusnutdinova
,
K. R.
, and
Klein
,
C.
, “
On linear degeneracy of integrable quasilinear systems in higher dimensions
,”
Lett. Math. Phys.
96
(
1
),
5
35
(
2011
).
7.
Ferapontov
,
E. V.
and
Pavlov
,
M. V.
, “
Quasiclassical limit of coupled KdV equations. Riemann invariants and multi-Hamiltonian structure
,”
Phys. D
52
(
2-3
),
211
219
(
1991
).
8.
Gibbons
,
J.
and
Tsarev
,
S. P.
, “
Reductions of Benney’s equations
,”
Phys. Lett. A
211
(
1
),
19
24
(
1996
);
Gibbons
,
J.
and
Tsarev
,
S. P.
, “
Conformal maps and reductions of the Benney equations
,”
Phys. Lett. A
258
(
4-6
),
263
271
(
1999
).
9.
Kodama
,
Yu.
and
Konopelchenko
,
B. G.
, “
Confluence of hypergeometric functions and integrable hydrodynamic type systems
,”
Theor. Math. Phys.
188
(
3
),
1334
1357
(
2016
).
10.
Pavlov
,
M. V.
, “
Integrable hydrodynamic chains
,”
J. Math. Phys.
44
(
9
),
4134
4156
(
2003
).
11.
Pavlov
,
M. V.
, “
Integrability of the Gibbons-Tsarev system
,”
Am. Math. Soc. Transl., (2)
224
,
247
259
(
2008
).
12.
Takasaki
,
K.
, “
An infinite number of hidden variables in hyper-Kähler metrics
,”
J. Math. Phys.
30
(
7
),
1515
1521
(
1989
);
Takasaki
,
K.
, “
Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy
,”
J. Math. Phys.
31
(
8
),
1877
1888
(
1990
).
13.
Tsarev
,
S. P.
, “
On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type
,”
Sov. Math. Dokl.
31
,
488
491
(
1985
);
Tsarev
,
S. P.
, “
The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
,”
Math. USSR Izvestiya
37
(
2
),
397
419
(
1991
).
You do not currently have access to this content.