In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to two-dimensional hydrodynamic reductions in a generic case.
REFERENCES
1.
Bogdanov
, L. V.
and Pavlov
, M. V.
, “Linearly degenerate hierarchies of quasiclassical SDYM type
,” J. Math. Phys.
58
, 093505
(2017
).2.
Bogoyavlenskii
, O.
, “Breaking solitons in 2 + 1-dimensional integrable equations
,” Russ. Math. Surv.
45
(4
), 1
–86
(1990
).3.
Dubrovin
,B. A.
and Novikov
,S. P.
, “Hydrodynamical formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method
,” Sov. Math. Dokl.
27
, 665
–669
(1983
);Dubrovin
, B. A.
and Novikov
, S. P.
, “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory
,” Russ. Math. Surv.
44
, 35
–124
(1989
).4.
Ferapontov
,E. V.
and Khusnutdinova
,K. R.
, “On integrability of (2+1)-dimensional quasilinear systems
,” Commun. Math. Phys.
248
(1
), 187
–206
(2004
);Ferapontov
, E. V.
and Khusnutdinova
, K. R.
, “The characterization of 2-component (2+1)-dimensional integrable systems of hydrodynamic type
,” J. Phys. A: Math. Gen.
37
(8
), 2949
–2963
(2004
).5.
Ferapontov
, E. V.
and Khusnutdinova
, K. R.
, “Hydrodynamic reductions of multidimensional dispersionless PDEs: The test for integrability
,” J. Math. Phys.
45
(6
), 2365
–2377
(2004
).6.
Ferapontov
, E. V.
, Khusnutdinova
, K. R.
, and Klein
, C.
, “On linear degeneracy of integrable quasilinear systems in higher dimensions
,” Lett. Math. Phys.
96
(1
), 5
–35
(2011
).7.
Ferapontov
, E. V.
and Pavlov
, M. V.
, “Quasiclassical limit of coupled KdV equations. Riemann invariants and multi-Hamiltonian structure
,” Phys. D
52
(2-3
), 211
–219
(1991
).8.
Gibbons
,J.
and Tsarev
,S. P.
, “Reductions of Benney’s equations
,” Phys. Lett. A
211
(1
), 19
–24
(1996
);Gibbons
, J.
and Tsarev
, S. P.
, “Conformal maps and reductions of the Benney equations
,” Phys. Lett. A
258
(4-6
), 263
–271
(1999
).9.
Kodama
, Yu.
and Konopelchenko
, B. G.
, “Confluence of hypergeometric functions and integrable hydrodynamic type systems
,” Theor. Math. Phys.
188
(3
), 1334
–1357
(2016
).10.
Pavlov
, M. V.
, “Integrable hydrodynamic chains
,” J. Math. Phys.
44
(9
), 4134
–4156
(2003
).11.
Pavlov
, M. V.
, “Integrability of the Gibbons-Tsarev system
,” Am. Math. Soc. Transl., (2)
224
, 247
–259
(2008
).12.
Takasaki
,K.
, “An infinite number of hidden variables in hyper-Kähler metrics
,” J. Math. Phys.
30
(7
), 1515
–1521
(1989
);Takasaki
, K.
, “ Symmetries of hyper-Kähler (or Poisson gauge field) hierarchy
,” J. Math. Phys.
31
(8
), 1877
–1888
(1990
).13.
Tsarev
,S. P.
, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type
,” Sov. Math. Dokl.
31
, 488
–491
(1985
);Tsarev
, S. P.
, “ The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method
,” Math. USSR Izvestiya
37
(2
), 397
–419
(1991
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.