In this article, we are interested in the following non-linear Schrödinger equation with non-local regional diffusion (Δ)ρ𝜖αu+u=f(u)in Rn, where ϵ > 0, 0 < α < 1, and (Δ)ρ𝜖α is a variational version of the regional Laplacian, whose range of scope is a ball with radius ρϵ(x) = ρ(ϵx) > 0, where ρ is a continuous function. We give general conditions on ρ and f which assure the existence and multiplicity of solution for the cited problem.

1.
Alves
,
C. O.
, “
Existence and multiplicity of solution for a class of quasilinear equations
,”
Adv. Nonlinear Stud.
5
,
73
87
(
2005
).
2.
Alves
,
C. O.
,
Carrião
,
P. C.
, and
Miyagaki
,
O. H.
, “
Non-linear perturbations of a periodic elliptic problem with critical growth
,”
J. Math. Anal. Appl.
260
,
133
146
(
2001
).
3.
Bogdan
,
K.
,
Burdzy
,
K.
, and
Chen
,
Z.
, “
Censored stable processes
,”
Probab. Theory Relat. Fields
127
,
89
152
(
2003
).
4.
Cao
,
D. M.
and
Noussair
,
E. S.
, “
Multiplicity of positive and nodal solutions for non-linear elliptic problem in RN
,”
Ann. Inst. Henri Poincaré
13
(
5
),
567
588
(
1996
).
5.
Cao
,
D. M.
and
Zhou
,
H. S.
, “
Multiple positive solutions of nonhomogeneous semilinear elliptic equations in RN
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
126
,
443
463
(
1996
).
6.
Capelas de Oliveira
,
E.
,
Costa
,
F.
, and
Vaz
,
J.
, “
The fractional Schrödinger equation for delta potentials
,”
J. Math. Phys.
51
,
123517
(
2010
).
7.
Chen
,
Z.
and
Kim
,
P.
, “
Green function estimate for censored stable processes
,”
Probab. Theory Relat. Fields
124
,
595
610
(
2002
).
8.
Chen
,
Z.
,
Kim
,
P.
, and
Song
,
R.
, “
Two-sided heat kernel estimates for censored stable-like processes
,”
Probab. Theory Relat. Fields
146
,
361
399
(
2010
).
9.
Chen
,
H.
and
Felmer
,
P.
, “
The Dirichlet elliptic problem involving regional fractional Laplacian
,” e-print arXiv:1509.05838v1 [math.AP] (
2015
).
10.
Cheng
,
M.
, “
Bound state for the fractional Schrödinger equation with unbounded potential
,”
J. Math. Phys.
53
,
043507
(
2012
).
11.
Di Nezza
,
E.
,
Palatucci
,
G.
, and
Valdinoci
,
E.
, “
Hitchhiker’s guide to the fractional Sobolev spaces
,”
Bull. Sci. Math.
136
,
521
573
(
2012
).
12.
Dong
,
J.
and
Xu
,
M.
, “
Some solutions to the space fractional Schrödinger equation using momentum representation method
,”
J. Math. Phys.
48
,
072105
(
2007
).
13.
Fall
,
M.
and
Valdinoci
,
E.
, “
Uniqueness and nondegeneracy of positive solutions of (−Δ)αu + u = up in Rn when α is close to 1
,”
Commun. Math. Phys.
329
(
1
),
383
404
(
2014
).
14.
Felmer
,
P.
,
Quaas
,
A.
, and
Tan
,
J.
, “
Positive solutions of non-linear Schrödinger equation with the fractional Laplacian
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
142
(
6
),
1237
1262
(
2012
).
15.
Felmer
,
P.
and
Torres
,
C.
, “
Radial symmetry of ground states for a regional fractional non-linear Schrödinger equation
,”
Commun. Pure Appl. Anal.
13
(
6
),
2395
2406
(
2014
).
16.
Felmer
,
P.
and
Torres
,
C.
, “
Non-linear Schrödinger equation with non-local regional diffusion
,”
Calculus Var. Partial Differ. Equations
54
(
1
),
75
98
(
2015
).
17.
Frank
,
R.
and
Lenzmann
,
E.
, “
Uniqueness of non-linear ground states for fractional Laplacians in R
,”
Acta Math.
210
(
2
),
261
318
(
2013
).
18.
Frank
,
R.
,
Lenzmann
,
E.
, and
Silvestre
,
L.
, “
Uniqueness of radial solutions for the fractional Laplacian
,”
Commun. Pure Appl. Math.
69
(
9
),
1671
1726
(
2016
).
19.
Guan
,
Q.-Y.
, “
Integration by parts formula for regional fractional Laplacian
,”
Commun. Math. Phys.
266
,
289
329
(
2006
).
20.
Guan
,
Q.-Y.
and
Ma
,
Z. M.
, “
The reflected α-symmetric stable processes and regional fractional Laplacian
,”
Probab. Theory Relat. Fields
134
(
4
),
649
694
(
2006
).
21.
Guo
,
X.
and
Xu
,
M.
, “
Some physical applications of fractional Schrödinger equation
,”
J. Math. Phys.
47
,
082104
(
2006
).
22.
Hsu
,
T.-S.
,
Lin
,
H.-L.
, and
Hu
,
C.-C.
, “
Multiple positive solutions of quasilinear elliptic equations in RN
,”
J. Math. Anal. Appl.
388
,
500
512
(
2012
).
23.
Hu
,
K.
and
Tang
,
C.-L.
, “
Existence and multiplicity of positive solutions of semilinear elliptic equations in unbounded domains
,”
J. Differ. Equations
251
,
609
629
(
2011
).
24.
Ishii
,
H.
and
Nakamura
,
G.
, “
A class of integral equations and approximation of p-Laplace equations
,”
Calculus Var. Partial Differ. Equations
37
,
485
522
(
2010
).
25.
Laskin
,
N.
, “
Fractional quantum mechanics and Lévy path integrals
,”
Phys. Lett. A
268
,
298
305
(
2000
).
26.
Laskin
,
N.
, “
Fractional Schrödinger equation
,”
Phys. Rev. E
66
,
056108
(
2002
).
27.
Lin
,
H.-L.
, “
Multiple positive solutions for semilinear elliptic systems
,”
J. Math. Anal. Appl.
391
,
107
118
(
2012
).
28.
Liu
,
S.
, “
On ground states of superlinear p-Laplacian equations in Rn
,”
J. Math. Anal. Appl.
361
,
48
58
(
2010
).
29.
Metzler
,
R.
and
Klafter
,
J.
, “
The random walks guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
).
30.
Pu
,
Y.
,
Liu
,
J.
, and
Tang
,
C.
, “
Ground states solutions for non-local regional Schrödinger equations
,”
Electron. J. Differ. Equations
2015
(
223
),
1
16
; available at http://ejde.math.txstate.edu or http://ejde.math.unt.edu.
31.
Rabinowitz
,
P. H.
, “
On a class of non-linear Schrödinguer equations
,”
ZAMP
43
,
270
291
(
1992
).
32.
Solomon
,
T.
,
Weeks
,
E.
, and
Swinney
,
K.
, “
Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow
,”
Phys. Rev. Lett.
71
,
3975
3978
(
1993
).
33.
Torres
,
C.
, “
Multiplicity and symmetry results for a non-linear Schrödinger equation with non-local regional diffusion
,”
Math. Methods Appl. Sci.
39
,
2808
2820
(
2016
).
34.
Torres
,
C.
, “
Symmetric ground state solution for a non-linear Schrödinger equation with non-local regional diffusion
,”
Complex Var. Elliptic Equations
61
(
10
),
1375
1388
(
2016
).
35.
Torres
,
C.
, “
Non-linear Dirichlet problem with non local regional diffusion
,”
Fract. Calculus Appl. Anal.
19
(
2
),
379
393
(
2016
).
36.
M.
Willem
,
Minimax Theorems
(
Birkhäuser
,
Boston, Basel, Berlin
,
1996
).
You do not currently have access to this content.