In this article, we are interested in the following non-linear Schrödinger equation with non-local regional diffusion , where ϵ > 0, 0 < α < 1, and is a variational version of the regional Laplacian, whose range of scope is a ball with radius ρϵ(x) = ρ(ϵx) > 0, where ρ is a continuous function. We give general conditions on ρ and f which assure the existence and multiplicity of solution for the cited problem.
REFERENCES
1.
Alves
, C. O.
, “Existence and multiplicity of solution for a class of quasilinear equations
,” Adv. Nonlinear Stud.
5
, 73
–87
(2005
).2.
Alves
, C. O.
, Carrião
, P. C.
, and Miyagaki
, O. H.
, “Non-linear perturbations of a periodic elliptic problem with critical growth
,” J. Math. Anal. Appl.
260
, 133
–146
(2001
).3.
Bogdan
, K.
, Burdzy
, K.
, and Chen
, Z.
, “Censored stable processes
,” Probab. Theory Relat. Fields
127
, 89
–152
(2003
).4.
Cao
, D. M.
and Noussair
, E. S.
, “Multiplicity of positive and nodal solutions for non-linear elliptic problem in
,” Ann. Inst. Henri Poincaré
13
(5
), 567
–588
(1996
).5.
Cao
, D. M.
and Zhou
, H. S.
, “Multiple positive solutions of nonhomogeneous semilinear elliptic equations in
,” Proc. - R. Soc. Edinburgh, Sect. A: Math.
126
, 443
–463
(1996
).6.
Capelas de Oliveira
, E.
, Costa
, F.
, and Vaz
, J.
, “The fractional Schrödinger equation for delta potentials
,” J. Math. Phys.
51
, 123517
(2010
).7.
Chen
, Z.
and Kim
, P.
, “Green function estimate for censored stable processes
,” Probab. Theory Relat. Fields
124
, 595
–610
(2002
).8.
Chen
, Z.
, Kim
, P.
, and Song
, R.
, “Two-sided heat kernel estimates for censored stable-like processes
,” Probab. Theory Relat. Fields
146
, 361
–399
(2010
).9.
Chen
, H.
and Felmer
, P.
, “The Dirichlet elliptic problem involving regional fractional Laplacian
,” e-print arXiv:1509.05838v1 [math.AP] (2015
).10.
Cheng
, M.
, “Bound state for the fractional Schrödinger equation with unbounded potential
,” J. Math. Phys.
53
, 043507
(2012
).11.
Di Nezza
, E.
, Palatucci
, G.
, and Valdinoci
, E.
, “Hitchhiker’s guide to the fractional Sobolev spaces
,” Bull. Sci. Math.
136
, 521
–573
(2012
).12.
Dong
, J.
and Xu
, M.
, “Some solutions to the space fractional Schrödinger equation using momentum representation method
,” J. Math. Phys.
48
, 072105
(2007
).13.
Fall
, M.
and Valdinoci
, E.
, “Uniqueness and nondegeneracy of positive solutions of (−Δ)αu + u = up in when α is close to 1
,” Commun. Math. Phys.
329
(1
), 383
–404
(2014
).14.
Felmer
, P.
, Quaas
, A.
, and Tan
, J.
, “Positive solutions of non-linear Schrödinger equation with the fractional Laplacian
,” Proc. - R. Soc. Edinburgh, Sect. A: Math.
142
(6
), 1237
–1262
(2012
).15.
Felmer
, P.
and Torres
, C.
, “Radial symmetry of ground states for a regional fractional non-linear Schrödinger equation
,” Commun. Pure Appl. Anal.
13
(6
), 2395
–2406
(2014
).16.
Felmer
, P.
and Torres
, C.
, “Non-linear Schrödinger equation with non-local regional diffusion
,” Calculus Var. Partial Differ. Equations
54
(1
), 75
–98
(2015
).17.
Frank
, R.
and Lenzmann
, E.
, “Uniqueness of non-linear ground states for fractional Laplacians in
,” Acta Math.
210
(2
), 261
–318
(2013
).18.
Frank
, R.
, Lenzmann
, E.
, and Silvestre
, L.
, “Uniqueness of radial solutions for the fractional Laplacian
,” Commun. Pure Appl. Math.
69
(9
), 1671
–1726
(2016
).19.
Guan
, Q.-Y.
, “Integration by parts formula for regional fractional Laplacian
,” Commun. Math. Phys.
266
, 289
–329
(2006
).20.
Guan
, Q.-Y.
and Ma
, Z. M.
, “The reflected α-symmetric stable processes and regional fractional Laplacian
,” Probab. Theory Relat. Fields
134
(4
), 649
–694
(2006
).21.
Guo
, X.
and Xu
, M.
, “Some physical applications of fractional Schrödinger equation
,” J. Math. Phys.
47
, 082104
(2006
).22.
Hsu
, T.-S.
, Lin
, H.-L.
, and Hu
, C.-C.
, “Multiple positive solutions of quasilinear elliptic equations in
,” J. Math. Anal. Appl.
388
, 500
–512
(2012
).23.
Hu
, K.
and Tang
, C.-L.
, “Existence and multiplicity of positive solutions of semilinear elliptic equations in unbounded domains
,” J. Differ. Equations
251
, 609
–629
(2011
).24.
Ishii
, H.
and Nakamura
, G.
, “A class of integral equations and approximation of p-Laplace equations
,” Calculus Var. Partial Differ. Equations
37
, 485
–522
(2010
).25.
Laskin
, N.
, “Fractional quantum mechanics and Lévy path integrals
,” Phys. Lett. A
268
, 298
–305
(2000
).26.
Laskin
, N.
, “Fractional Schrödinger equation
,” Phys. Rev. E
66
, 056108
(2002
).27.
Lin
, H.-L.
, “Multiple positive solutions for semilinear elliptic systems
,” J. Math. Anal. Appl.
391
, 107
–118
(2012
).28.
Liu
, S.
, “On ground states of superlinear p-Laplacian equations in
,” J. Math. Anal. Appl.
361
, 48
–58
(2010
).29.
Metzler
, R.
and Klafter
, J.
, “The random walks guide to anomalous diffusion: A fractional dynamics approach
,” Phys. Rep.
339
, 1
–77
(2000
).30.
Pu
, Y.
, Liu
, J.
, and Tang
, C.
, “Ground states solutions for non-local regional Schrödinger equations
,” Electron. J. Differ. Equations
2015
(223
), 1
–16
; available at http://ejde.math.txstate.edu or http://ejde.math.unt.edu.31.
Rabinowitz
, P. H.
, “On a class of non-linear Schrödinguer equations
,” ZAMP
43
, 270
–291
(1992
).32.
Solomon
, T.
, Weeks
, E.
, and Swinney
, K.
, “Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow
,” Phys. Rev. Lett.
71
, 3975
–3978
(1993
).33.
Torres
, C.
, “Multiplicity and symmetry results for a non-linear Schrödinger equation with non-local regional diffusion
,” Math. Methods Appl. Sci.
39
, 2808
–2820
(2016
).34.
Torres
, C.
, “Symmetric ground state solution for a non-linear Schrödinger equation with non-local regional diffusion
,” Complex Var. Elliptic Equations
61
(10
), 1375
–1388
(2016
).35.
Torres
, C.
, “Non-linear Dirichlet problem with non local regional diffusion
,” Fract. Calculus Appl. Anal.
19
(2
), 379
–393
(2016
).36.
M.
Willem
, Minimax Theorems
(Birkhäuser
, Boston, Basel, Berlin
, 1996
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.