We build analytic surfaces in R3(c) represented by the most general sixth Painlevé equation PVI in two steps. First, the moving frame of the surfaces built by Bonnet in 1867 is extrapolated to a new, second order, isomonodromic matrix Lax pair of PVI, whose elements depend rationally on the dependent variable and quadratically on the monodromy exponents θj. Second, by converting back this Lax pair to a moving frame, we obtain an extrapolation of Bonnet surfaces to surfaces with two more degrees of freedom. Finally, we give a rigorous derivation of the quantum correspondence for PVI.

1.
Abramowitz
,
M.
and
Stegun
,
I.
,
Handbook of Mathematical Functions, Tenth Printing
(
Dover
,
New York
,
1972
).
2.
Babich
,
M. V.
and
Bordag
,
L. A.
, “
Projective differential geometrical structure of the Painlevé equations
,”
J. Differ. Equations
157
,
452
485
(
1999
).
3.
Bobenko
,
A. I.
, “
Surfaces in terms of 2 by 2 matrices: Old and new integrable cases
,” in
Harmonic Maps and Integrable Systems
, Aspects of Mathematics E23, edited by
Fordy
,
A. P.
and
Wood
,
J. C.
(
Vieweg
,
Braunschweig, Wiesbaden
,
1994
), pp.
83
128
.
4.
Bobenko
,
A. I.
and
Eitner
,
U.
, “
Bonnet surfaces and Painlevé equations
,”
J. Reine Angew. Math.
1998
(
499
),
47
79
.
5.
Bobenko
,
A. I.
and
Eitner
,
U.
,
Painlevé Equations in Differential Geometry of Surfaces
, Lecture Notes in Mathematics 1753 (
Springer
,
Berlin
,
2000
), p.
120
.
6.
Bobenko
,
A. I.
,
Eitner
,
U.
, and
Kitaev
,
A. V.
, “
Surfaces with harmonic inverse mean curvature and Painlevé equations
,”
Geom. Dedicata
68
,
187
227
(
1997
).
7.
Bonnet
,
O.
, “
Mémoire sur la théorie des surfaces applicables sur une surface donnée. Deuxième partie: Détermination de toutes les surfaces applicables sur une surface donnée
,”
J. Ec. Polytech.
42
,
1
151
(
1867
).
8.
Cartan
,
É.
, “
Sur les couples de surfaces applicables avec conservation des courbures principales
,”
Bull. Sci. Math.
66
,
55
72
(
1942
), 74–85.
9.
Chazy
,
J.
, “
Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
,”
Acta Math.
34
,
317
385
(
1911
).
10.
Chen
,
W.
and
Li
,
H.
, “
Bonnet surfaces and isothermic surfaces
,”
Results Math.
31
,
40
52
(
1997
).
11.
Conte
,
R.
, “
On the Lax pairs of the sixth Painlevé equation
,”
RIMS Kôkyûroku Bessatsu
B2
,
21
27
(
2007
); e-print arXiv:nlin/0701049.
12.
Conte
,
R.
, “
Surfaces de Bonnet et équations de Painlevé
,”
C. R. Math. Acad. Sci. Paris
355
,
40
44
(
2017
); e-print arXiv:1607.01222 [math-ph].
13.
Conte
,
R.
and
Dornic
,
I.
, “
The master Painlevé VI heat equation
,”
C. R. Acad. Sci. Paris
352
,
803
806
(
2014
); e-print arXiv:1409.1166 [math-ph].
14.
Conte
,
R.
,
Grundland
,
A. M.
, and
Musette
,
M.
, “
A reduction of the resonant three-wave interaction to the generic sixth Painlevé equation
,”
J. Phys. A: Math. Gen.
39
,
12115
12127
(
2006
); e-print arXiv:nlin/0604011, Special issue One hundred years of Painlevé VI.
15.
Conte
,
R.
and
Musette
,
M.
,
The Painlevé Handbook
(
Springer
,
Berlin
,
2008
) [ (Regular and Chaotic Dynamics, Moscow, 2011) (in Russian)].
16.
Darboux
,
G.
, “
Sur une équation linéaire
,”
C. R. Acad. Sci.
94
,
1645
1648
(
1882
).
17.
Fuchs
,
R.
, “
Sur quelques équations différentielles linéaires du second ordre
,”
C. R. Acad. Sci.
141
,
555
558
(
1905
).
18.
Garnier
,
R.
, “
Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
,”
Ann. Sci. Ec. Norm. Super.
29
,
1
126
(
1912
).
19.
Garnier
,
R.
, “
Sur un théorème de Schwarz
,”
Comment. Math. Helvetici
25
,
140
172
(
1951
).
20.
Halphen
,
G.-H.
,
Traité des fonctions elliptiques et de leurs applications
, Première partie, Théorie des Fonctions Elliptiques et de Leurs Développements en Série (
Gauthier-Villars
,
Paris
,
1886
), p.
492
, http://gallica.bnf.fr/document?O=N007348.
21.
Harnad
,
J.
, “
Dual isomonodromic deformations and moment maps to loop algebras
,”
Commun. Math. Phys.
166
,
337
365
(
1994
).
22.
Hazzidakis
,
J. N.
, “
Biegung mit erhaltung der hauptkrümmungsradien
,”
J. Reine Angew. Math.
1897
(
117
),
42
56
.
23.
Heun
,
K.
, “
Zur theorie der Riemann’schen functionen zweiter Ordnung mit vier verzweigungspunkten
,”
Math. Ann.
33
,
161
179
(
1889
).
24.
Jimbo
,
M.
and
Miwa
,
T.
, “
Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II
,”
Phys. D
2
,
407
448
(
1981
).
25.
Jimbo
,
M.
and
Sakai
,
H.
, “
A q-analog of the sixth Painlevé equation
,”
Lett. Math. Phys.
38
,
145
154
(
1996
).
26.
Lin
,
R.
,
Conte
,
R.
, and
Musette
,
M.
, “
On the Lax pairs of the continuous and discrete sixth Painlevé equations
,”
J. Nonlinear Math. Phys.
10
(
Suppl. 2
),
107
118
(
2003
).
27.
Mahoux
,
G.
, “
Introduction to the theory of isomonodromic deformations of linear ordinary differential equations with rational coefficients
,” in
The Painlevé Property, One Century Later
, CRM Series in Mathematical Physics, edited by
Conte
,
R.
(
Springer
,
New York
,
1999
), pp.
35
76
.
28.
Malmquist
,
J.
, “
Sur les équations différentielles du second ordre dont l’intégrale générale a ses points critiques fixes
,”
Arkiv Math. Astr. Fys.
17
,
1
89
(
1922–1923
).
29.
Manin
,
Yu. I.
, “
Sixth Painlevé equation, universal elliptic curve and mirror of P2
,” in
Geometry of Differential Equations
, AMS Translations: Series 2, edited by
Khovanskii
,
A.
,
Varchenko
,
A.
, and
Vassiliev
,
V.
(
American Mathematical Society Translations
,
1998
), 186(39), pp.
131
151
; e-print arXiv:alg-geom/9605010.
30.
Novikov
,
D. P.
, “
The 2×2 matrix Schlesinger system and the Belavin-Polyakov-Zamolodchikov system
,”
Teor. Mat. Fiz.
161
,
191
203
(
2009
)
Novikov
,
D. P.
, [
Theor. Math. Phys.
161
,
1485
1496
(
2009
)].
31.
Noumi
,
M.
and
Yamada
,
Y.
, “
A new Lax pair for the sixth Painlevé equation associated with so(8)
,” in
Microlocal Analysis and Complex Fourier Analysis
, edited by
Fujita
,
K.
and
Kawai
,
T.
(
World Scientific
,
Singapore
,
2002
), pp.
238
252
; e-print arXiv:math-ph/0203029.
32.
Okamoto
,
K.
, “
Polynomial Hamiltonians associated with Painlevé equations. II. Differential equations satisfied by polynomial Hamiltonians
,”
Proc. Jpn. Acad., Ser. A
56
,
367
371
(
1980
).
33.
Painlevé
,
P.
, “
Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme
,”
Acta Math.
25
,
1
85
(
1902
).
34.
Painlevé
,
P.
, “
Sur les équations différentielles du second ordre à points critiques fixes
,”
C. R. Acad. Sci. Paris
143
,
1111
1117
(
1906
).
35.
Phillips
,
E. R.
, “
Karl M. Peterson: The earliest derivation of the Mainardi-Codazzi equations and the fundamental theorem of surface theory
,”
Hist. Math.
6
,
137
163
(
1979
).
36.
Picard
,
É.
, “
Mémoire sur la théorie des fonctions algébriques de deux variables
,”
J. Math. Pure Appl.
5
,
135
319
(
1889
).
37.
Poincaré
,
H.
, “
Sur les groupes des équations linéaires
,”
Acta Math.
4
,
201
312
(
1883
);
Darboux
,
G.
,
Oeuvres
(
Gauthier-Villars
,
Paris
,
1951–1956
), tome II, pp.
300
401
.
38.
Heun’s Differential Equations
, edited by
Ronveaux
,
A.
(
Oxford University Press
,
Oxford
,
1995
).
39.
Schlesinger
,
L.
, “
Über eine Klasse von differentialsystemen beliebiger Ordnung mit festen kritischen Punkten
,”
J. Reine Angew. Math.
1912
(
141
),
96
145
.
40.
de Sparre
,
C.
, “
Sur l’équation d2y/dx2+=0… premier mémoire
,”
Acta Math.
3
,
105
140
(
1883
) [“Deuxième mémoire,” Acta Math. 3, 289–321 (1883)].
41.
Springborn
,
B. A.
, “
Bonnet pairs in the 3-sphere
,”
Contemp. Math.
308
,
297
303
(
2002
).
42.
Suleimanov
,
B. I.
, “
Hamiltonian property of the Painlevé equations and the method of isomonodromic deformations
,”
Differ. Uravn.
30
,
791
796
(
1994
) [Differ. Equations 30, 726–732 (1994)].
43.
Suleimanov
,
B. I.
, “‘
Quantum’ linearization of Painlevé equations as a component of their L, A pairs
,”
Ufa Math. J.
4
(
2
),
127
136
(
2012
), ISSN 2304-0122; e-print arXiv:1302.6716.
44.
Tsegel’nik
,
V. V.
, “
Hamiltonians associated with the sixth Painlevé equation
,”
Teor. Mat. Fiz.
151
,
54
65
(
2007
)
Tsegel’nik
,
V. V.
, [
Theor. Math. Phys.
151
,
482
491
(
2007
)].
45.
Veselov
,
A. P.
, “
On Darboux-Treibich-Verdier potentials
,”
Lett. Math. Phys.
96
,
209
216
(
2011
); e-print arXiv:1004.5355 [math-ph].
46.
Voss
,
K.
,
Bonnet Surfaces in Spaces of Constant Curvature
, Lecture Notes, First MSJ International Research on Geometry and Global Analysis (
Research institute Sendai
,
Japan
,
1993
), pp.
295
307
.
47.
Zabrodin
,
A.
and
Zotov
,
A.
, “
Quantum Painlevé-Calogero correspondence
,”
J. Math. Phys.
53
,
073507
(
2012
); e-print arXiv:1107.5672.
48.
Zabrodin
,
A.
and
Zotov
,
A.
, “
Quantum Painlevé-Calogero correspondence for Painlevé VI
,”
J. Math. Phys.
53
,
073508
(
2012
); e-print arXiv:1107.5672.
49.
Zotov
,
A.
, “
Elliptic linear problem for Calogero-Inozemtsev model and Painlevé VI equation
,”
Lett. Math. Phys.
67,
153
165
(
2004
); e-print arXiv:hep-th/0310260.
50.
The Codazzi equations were in fact first written in 1853 by
Peterson
,
K. M.
, a Latvian student, before Mainardi, 1856, and Codazzi, 1868, see the historical notes by Phillips.35 
51.

Erratum. In formula 18.6.23 of Abramowitz and Stegun1, the last g2 should be g3.

52.

This means that both surfaces have the same first fundamental form.

You do not currently have access to this content.