Ten types of discrete Fourier transforms of Weyl orbit functions are developed. Generalizing one-dimensional cosine, sine, and exponential, each type of the Weyl orbit function represents an exponential symmetrized with respect to a subgroup of the Weyl group. Fundamental domains of even affine and dual even affine Weyl groups, governing the argument and label symmetries of the even orbit functions, are determined. The discrete orthogonality relations are formulated on finite sets of points from the refinements of the dual weight lattices. Explicit counting formulas for the number of points of the discrete transforms are deduced. Real-valued Hartley orbit functions are introduced, and all ten types of the corresponding discrete Hartley transforms are detailed.

1.
Bharkad
,
S. D.
and
Kokare
,
M.
, “
Hartley transform based fingerprint matching
,”
J. Inf. Process. Syst.
8
,
85
100
(
2012
).
2.
Bjorner
,
A.
and
Brenti
,
F.
,
Combinatorics of Coxeter Groups
, Graduate Texts in Mathematics (
Springer
,
New York
,
2005
), Vol. 231.
3.
Bourbaki
,
N.
, in
Groupes et Algèbres de Lie
(
Masson
,
Paris
,
1981
), Chap. IV–VI.
4.
Bracewell
,
R. N.
, “
Discrete Hartley transform
,”
J. Opt. Soc. Am.
73
,
1832
1835
(
1983
).
5.
Cserti
,
J.
and
Tichy
,
G.
, “
A simple model for the vibrational modes in honeycomb lattices
,”
Eur. J. Phys.
25
,
723
736
(
2004
).
6.
Czyżycki
,
T.
and
Hrivnák
,
J.
, “
Generalized discrete orbit function transforms of affine Weyl groups
,”
J. Math. Phys.
55
,
113508
(
2014
).
7.
Drissi
,
L. B.
,
Saidi
,
E. H.
, and
Bousmina
,
M.
, “
Graphene, lattice field theory and symmetries
,”
J. Math. Phys.
52
,
022306
(
2011
).
8.
Háková
,
L.
and
Hrivnák
,
J.
, “
Fourier transforms of E–functions of O(5) and G(2)
,” in
Geometric Methods in Physics, XXXII workshop, Białowieża, Poland, June 30–July 6, 2013
(
Birkhäuser/Springer
,
2014
), pp.
243
252
.
9.
Háková
,
L.
,
Hrivnák
,
J.
, and
Patera
,
J.
, “
Six types of E–functions of Lie group O(5) and G(2)
,”
J. Phys. A: Math. Theor.
43
,
165206
(
2010
).
10.
Hrivnák
,
J.
,
Kashuba
,
I.
, and
Patera
,
J.
, “
On E–functions of semisimple Lie groups
,”
J. Phys. A: Math. Theor.
44
,
325205
(
2011
).
11.
Hrivnák
,
J.
and
Motlochová
,
L.
, “
Discrete cosine and sine transforms generalized to honeycomb lattice
,” e-print arXiv:1706.05672.
12.
Hrivnák
,
J.
,
Motlochová
,
L.
, and
Patera
,
J.
, “
On discretization of tori of compact simple Lie groups: II
,”
J. Phys. A: Math. Theor.
45
,
255201
(
2012
).
13.
Hrivnák
,
J.
,
Motlochová
,
L.
, and
Patera
,
J.
, “
Cubature formulas of multivariate polynomials arising from symmetric orbit functions
,”
Symmetry
8
,
63
(
2016
).
14.
Hrivnák
,
J.
and
Patera
,
J.
, “
On discretization of tori of compact simple Lie groups
,”
J. Phys. A: Math. Theor.
42
,
385208
(
2009
).
15.
Hrivnák
,
J.
and
Patera
,
J.
, “
On E–discretization of tori of compact simple Lie groups
,”
J. Phys. A: Math. Theor.
43
,
165206
(
2010
).
16.
Hrivnák
,
J.
and
Walton
,
M. A.
, “
Discretized Weyl-orbit functions: Modified multiplication and Galois symmetry
,”
J. Phys. A: Math. Theor.
48
,
175205
(
2015
).
17.
Hrivnák
,
J.
and
Walton
,
M. A.
, “
Weight-lattice discretization of Weyl-orbit functions
,”
J. Math. Phys.
57
,
083512
(
2016
).
18.
Humphreys
,
J. E.
,
Reflection Groups and Coxeter Groups
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
Cambridge
,
1990
), Vol. 29.
19.
Kariyado
,
T.
and
Hatsugai
,
Y.
, “
Manipulation of Dirac cones in mechanical graphene
,”
Sci. Rep.
5
,
18107
(
2015
).
20.
Klimyk
,
A. U.
and
Patera
,
J.
, “
Orbit functions
,”
Symmetry, Integrability Geom.: Methods Appl.
2
,
006
(
2006
).
21.
Klimyk
,
A. U.
and
Patera
,
J.
, “
Antisymmetric orbit functions
,”
Symmetry, Integrability Geom.: Methods Appl.
3
,
023
(
2007
).
22.
Klimyk
,
A. U.
and
Patera
,
J.
, “
E–orbit functions
,”
Symmetry, Integrability Geom.: Methods Appl.
4
,
002
(
2008
).
23.
Kühl
,
H.
,
Sacchi
,
M. D.
, and
Fertig
,
J.
, “
The Hartley transform in seismic imaging
,”
Geophysics
66
,
1251
1257
(
2001
).
24.
Liu
,
S.
,
Guo
,
C.
, and
Sheridan
,
J. T.
, “
A review of optical image encryption techniques
,”
Opt. Laser Technol.
57
,
327
342
(
2014
).
25.
Li
,
H.
and
Xu
,
Y.
, “
Discrete Fourier analysis on fundamental domain and simplex of Ad lattice in d-variables
,”
J. Fourier Anal. Appl.
16
,
383
433
(
2010
).
26.
Moody
,
R. V.
,
Motlochová
,
L.
, and
Patera
,
J.
, “
Gaussian cubature arising from hybrid characters of simple Lie groups
,”
J. Fourier Anal. Appl.
20
,
1257
1290
(
2014
).
27.
Moody
,
R. V.
and
Patera
,
J.
, “
Orthogonality within the families of C–, S–, and E–functions of any compact semisimple Lie group
,”
Symmetry, Integrability Geom.: Methods Appl.
2
,
076
(
2006
).
28.
Moody
,
R. V.
and
Patera
,
J.
, “
Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups
,”
Adv. Appl. Math.
47
,
509
535
(
2011
).
29.
Paraskevas
,
I.
,
Barbarosou
,
M.
, and
Chilton
,
E.
, “
Hartley transform and the use of the Whitened Hartley spectrum as a tool for phase spectral processing
,”
J. Eng.
2015
,
1
7
.
30.
Poularikas
,
A. D.
,
The Transforms and Applications Handbook
(
CRC Press
,
Boca Raton
,
2010
).
31.
Püschel
,
M.
and
Moura
,
J. M. F.
, “
Algebraic signal processing theory: Foundation and 1-D time
,”
IEEE Trans. Signal Process.
56
,
3572
3585
(
2008
).
32.
Sun
,
H.
, “
The Hartley transform applied to particle image velocimetry
,”
Meas. Sci. Technol.
13
,
1996
2000
(
2002
).
You do not currently have access to this content.