We prove that both the liquid drop model in R 3 with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-states for all masses as long as the external potential V(x) in these models is of long range, that is, it decays slower than Newtonian (e.g., V ( x ) | x | 1 for large |x|.) For the TFDW model, we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction, we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.

1.
G.
Gamow
, “
Mass defect curve and nuclear constitution
,”
Proc. R. Soc. A
126
,
632
644
(
1930
).
2.
C. F.
von Weizsäcker
, “
Zur theorie der kernmassen
,”
Z. Phys. A
96
,
431
458
(
1935
).
3.
H.
Knüpfer
and
C. B.
Muratov
, “
On an isoperimetric problem with a competing nonlocal term II: The general case
,”
Commun. Pure Appl. Math.
67
,
1974
1994
(
2014
).
4.
R.
Benguria
,
H.
Brézis
, and
E. H.
Lieb
, “
The Thomas-Fermi-von Weizsäcker theory of atoms and molecules
,”
Commun. Math. Phys.
79
,
167
180
(
1981
).
5.
C.
Le Bris
and
P.-L.
Lions
, “
From atoms to crystals: A mathematical journey
,”
Bull. Am. Math. Soc.
42
,
291
363
(
2005
).
6.
E. H.
Lieb
, “
Thomas-Fermi and related theories of atoms and molecules
,”
Rev. Mod. Phys.
53
,
603
641
(
1981
).
7.
R. L.
Frank
,
P. T.
Nam
, and
H.
van den Bosch
, “
The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory
,”
Comm. Pure Appl. Math.
(to appear); preprint arXiv:1606.07355 (
2016
).
8.
J.
Lu
and
F.
Otto
, “
An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus
,” preprint arXiv:1508.07172 (
2015
).
9.
P.-L.
Lions
, “
Solutions of Hartree-Fock equations for Coulomb systems
,”
Commun. Math. Phys.
109
,
33
97
(
1987
).
10.
C.
Le Bris
, “
Some results on the Thomas-Fermi-Dirac-von Weizsäcker model
,”
Differ. Integr. Equations
6
,
337
353
(
1993
), https://projecteuclid.org/euclid.die/1370870194.
11.
P. T.
Nam
and
H.
van den Bosch
, “
Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges
,”
Math. Phys. Anal. Geom.
20
,
6
(
2017
).
12.
J.
Lu
and
F.
Otto
, “
Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model
,”
Commun. Pure Appl. Math.
67
,
1605
1617
(
2014
).
13.
H.
Knüpfer
,
C. B.
Muratov
, and
M.
Novaga
, “
Low density phases in a uniformly charged liquid
,”
Commun. Math. Phys.
345
,
141
183
(
2016
).
14.
A.
Finzi
, “
On the validity of Newton’s law at a long distance
,”
Mon. Not. R. Astron. Soc.
127
,
21
30
(
1963
).
15.
M.
Milgrom
, “
A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis
,”
Astrophys. J.
270
,
365
370
(
1983
).
16.
D. V.
Bugg
, “
MOND—A review
,”
Can. J. Phys.
93
,
119
125
(
2015
).
17.
M.
Milgrom
, “
MOND theory
,”
Can. J. Phys.
93
,
107
118
(
2015
).
18.
J. D.
Bekenstein
, “
Relativistic gravitation theory for the modified Newtonian dynamics paradigm
,”
Phys. Rev. D
70
,
083509
(
2004
).
19.
R. L.
Frank
and
E. H.
Lieb
, “
A compactness lemma and its application to the existence of minimizers for the liquid drop model
,”
SIAM J. Math. Anal.
47
,
4436
4450
(
2015
).
20.
P.-L.
Lions
, “
The concentration-compactness principle in the calculus of variations. The locally compact case. I
,”
Ann. Inst. Henri Poincare Anal. Non Linéaire
1
,
109
145
(
1984
).
21.
F.
Maggi
,
Sets of Finite Perimeter and Geometric Variational Problems
, 1st ed., Cambridge Studies in Advanced Mathematics Vol. 135 (
Cambridge University Press
,
Cambridge
,
2012
).
22.
E. H.
Lieb
and
M.
Loss
,
Analysis
, Graduate Studies in Mathematics Vol. 14 (
American Mathematical Society
,
Providence, RI
,
1997
), pp.
xviii+278
.
23.
I.
Ekeland
, “
Nonconvex minimization problems
,”
Bull. Am. Math. Soc.
1
,
443
474
(
1979
).
You do not currently have access to this content.