We prove that both the liquid drop model in with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-states for all masses as long as the external potential V(x) in these models is of long range, that is, it decays slower than Newtonian (e.g., for large |x|.) For the TFDW model, we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction, we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.
REFERENCES
1.
G.
Gamow
, “Mass defect curve and nuclear constitution
,” Proc. R. Soc. A
126
, 632
–644
(1930
).2.
C. F.
von Weizsäcker
, “Zur theorie der kernmassen
,” Z. Phys. A
96
, 431
–458
(1935
).3.
H.
Knüpfer
and C. B.
Muratov
, “On an isoperimetric problem with a competing nonlocal term II: The general case
,” Commun. Pure Appl. Math.
67
, 1974
–1994
(2014
).4.
R.
Benguria
, H.
Brézis
, and E. H.
Lieb
, “The Thomas-Fermi-von Weizsäcker theory of atoms and molecules
,” Commun. Math. Phys.
79
, 167
–180
(1981
).5.
C.
Le Bris
and P.-L.
Lions
, “From atoms to crystals: A mathematical journey
,” Bull. Am. Math. Soc.
42
, 291
–363
(2005
).6.
E. H.
Lieb
, “Thomas-Fermi and related theories of atoms and molecules
,” Rev. Mod. Phys.
53
, 603
–641
(1981
).7.
R. L.
Frank
, P. T.
Nam
, and H.
van den Bosch
, “The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory
,” Comm. Pure Appl. Math.
(to appear); preprint arXiv:1606.07355 (2016
).8.
J.
Lu
and F.
Otto
, “An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus
,” preprint arXiv:1508.07172 (2015
).9.
P.-L.
Lions
, “Solutions of Hartree-Fock equations for Coulomb systems
,” Commun. Math. Phys.
109
, 33
–97
(1987
).10.
C.
Le Bris
, “Some results on the Thomas-Fermi-Dirac-von Weizsäcker model
,” Differ. Integr. Equations
6
, 337
–353
(1993
), https://projecteuclid.org/euclid.die/1370870194.11.
P. T.
Nam
and H.
van den Bosch
, “Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges
,” Math. Phys. Anal. Geom.
20
, 6
(2017
).12.
J.
Lu
and F.
Otto
, “Nonexistence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model
,” Commun. Pure Appl. Math.
67
, 1605
–1617
(2014
).13.
H.
Knüpfer
, C. B.
Muratov
, and M.
Novaga
, “Low density phases in a uniformly charged liquid
,” Commun. Math. Phys.
345
, 141
–183
(2016
).14.
A.
Finzi
, “On the validity of Newton’s law at a long distance
,” Mon. Not. R. Astron. Soc.
127
, 21
–30
(1963
).15.
M.
Milgrom
, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis
,” Astrophys. J.
270
, 365
–370
(1983
).16.
D. V.
Bugg
, “MOND—A review
,” Can. J. Phys.
93
, 119
–125
(2015
).17.
M.
Milgrom
, “MOND theory
,” Can. J. Phys.
93
, 107
–118
(2015
).18.
J. D.
Bekenstein
, “Relativistic gravitation theory for the modified Newtonian dynamics paradigm
,” Phys. Rev. D
70
, 083509
(2004
).19.
R. L.
Frank
and E. H.
Lieb
, “A compactness lemma and its application to the existence of minimizers for the liquid drop model
,” SIAM J. Math. Anal.
47
, 4436
–4450
(2015
).20.
P.-L.
Lions
, “The concentration-compactness principle in the calculus of variations. The locally compact case. I
,” Ann. Inst. Henri Poincare Anal. Non Linéaire
1
, 109
–145
(1984
).21.
F.
Maggi
, Sets of Finite Perimeter and Geometric Variational Problems
, 1st ed., Cambridge Studies in Advanced Mathematics Vol. 135 (Cambridge University Press
, Cambridge
, 2012
).22.
E. H.
Lieb
and M.
Loss
, Analysis
, Graduate Studies in Mathematics Vol. 14 (American Mathematical Society
, Providence, RI
, 1997
), pp. xviii+278
.23.
I.
Ekeland
, “Nonconvex minimization problems
,” Bull. Am. Math. Soc.
1
, 443
–474
(1979
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.