We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature , equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).
REFERENCES
1.
Bach
, R.
, “Zur weylschen relativitatstheorie und der Weylschen erweiterung des krummungstensorbegriffs
,” Math. Z.
9
(1-2
), 110
–135
(1921
).2.
Blair
, D. E.
, Riemannian Geometry of Contact and Symplectic Manifolds
, Volume 203 of Progress in Mathematics (Birkhauser
, Basel
, 2002
).3.
Boyer
, C. P.
and Galicki
, K.
, “On Sasakian-Einstein geometry
,” Int. J. Math.
11
, 873
(2000
).4.
Boyer
, C. P.
, Galicki
, K.
, and Matzeu
, P.
, “On η-Einstein Sasakian geometry
,” Commun. Math. Phys.
262
, 177
–208
(2006
).5.
Candelas
, P.
, Horowitz
, G. T.
, Strominger
, A.
, and Witten
, E.
, “Vacuum configurations for superstrings
,” Nucl. Phys. B
258
, 46
–74
(1985
).6.
Chen
, Q.
and He
, C.
, “On Bach flat warped product Einstein manifolds
,” Pac. J. Math.
265
, 313
–326
(2013
).7.
Cvetic
, M.
, Lu
, H.
, Page
, D. N.
, and Pope
, C. N.
, “New Einstein-Sasaki spaces in five and higher dimensions
,” Phys. Rev. Lett.
95
, 071101
(2005
).8.
Hasegawa
, I.
and Nakane
, T.
, “On Sasakian manifolds with vanishing contact Bochner curvature tensor
,” Hokkaido Math. J.
9
, 184
–189
(1980
).9.
Maldacena
, J.
, “The large N limit of superconformal field theories and supergravity
,” Adv. Theor. Math. Phys.
2
, 231
–252
(1998
).10.
Wu
, H.
, “The Bochner technique in differential geometry
, Math. Rep.
3
(2
), 289
–538
(1988
).11.
12.
Zhang
, X.
, “A note on Sasakian metrics with constant scalar curvature,
,” J. Math. Phys.
50
, 103505
(2009
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.