We show that a (2n + 1)-dimensional Sasakian manifold (M, g) with a purely transversal Bach tensor has constant scalar curvature 2n(2n+1), equality holding if and only if (M, g) is Einstein. For dimension 3, M is locally isometric to the unit sphere S3. For dimension 5, if in addition (M, g) is complete, then it has positive Ricci curvature and is compact with finite fundamental group π1(M).

1.
Bach
,
R.
, “
Zur weylschen relativitatstheorie und der Weylschen erweiterung des krummungstensorbegriffs
,”
Math. Z.
9
(
1-2
),
110
135
(
1921
).
2.
Blair
,
D. E.
,
Riemannian Geometry of Contact and Symplectic Manifolds
, Volume 203 of Progress in Mathematics (
Birkhauser
,
Basel
,
2002
).
3.
Boyer
,
C. P.
and
Galicki
,
K.
, “
On Sasakian-Einstein geometry
,”
Int. J. Math.
11
,
873
(
2000
).
4.
Boyer
,
C. P.
,
Galicki
,
K.
, and
Matzeu
,
P.
, “
On η-Einstein Sasakian geometry
,”
Commun. Math. Phys.
262
,
177
208
(
2006
).
5.
Candelas
,
P.
,
Horowitz
,
G. T.
,
Strominger
,
A.
, and
Witten
,
E.
, “
Vacuum configurations for superstrings
,”
Nucl. Phys. B
258
,
46
74
(
1985
).
6.
Chen
,
Q.
and
He
,
C.
, “
On Bach flat warped product Einstein manifolds
,”
Pac. J. Math.
265
,
313
326
(
2013
).
7.
Cvetic
,
M.
,
Lu
,
H.
,
Page
,
D. N.
, and
Pope
,
C. N.
, “
New Einstein-Sasaki spaces in five and higher dimensions
,”
Phys. Rev. Lett.
95
,
071101
(
2005
).
8.
Hasegawa
,
I.
and
Nakane
,
T.
, “
On Sasakian manifolds with vanishing contact Bochner curvature tensor
,”
Hokkaido Math. J.
9
,
184
189
(
1980
).
9.
Maldacena
,
J.
, “
The large N limit of superconformal field theories and supergravity
,”
Adv. Theor. Math. Phys.
2
,
231
252
(
1998
).
10.
Wu
,
H.
, “
The Bochner technique in differential geometry
,
Math. Rep.
3
(
2
),
289
538
(
1988
).
11.
Yano
,
K.
and
Kon
,
M.
,
Structures on Manifolds
(
World Scientific
,
1984
).
12.
Zhang
,
X.
, “
A note on Sasakian metrics with constant scalar curvature,
,”
J. Math. Phys.
50
,
103505
(
2009
).
You do not currently have access to this content.