We start with Fannes’ type and Winter’s type tight (uniform) continuity bounds for the quantum conditional mutual information and their specifications for states of special types. Then we analyse continuity of the Holevo quantity with respect to nonequivalent metrics on the set of discrete ensembles of quantum states. We show that the Holevo quantity is continuous on the set of all ensembles of m states with respect to all the metrics if either m or the dimension of underlying Hilbert space is finite and obtain Fannes’ type tight continuity bounds for the Holevo quantity in this case. In the general case, conditions for local continuity of the Holevo quantity for discrete and continuous ensembles are found. Winter’s type tight continuity bound for the Holevo quantity under constraint on the average energy of ensembles is obtained and applied to the system of quantum oscillators. The above results are used to obtain tight and close-to-tight continuity bounds for basic capacities of finite-dimensional channels (significantly refining the Leung-Smith continuity bounds).

1.
Alicki
,
R.
and
Fannes
,
M.
, “
Continuity of quantum conditional information
,”
J. Phys. A: Math. Gen.
37
(
5
),
L55
L57
(
2004
).
2.
Audenaert
,
K. M. R.
, “
A sharp continuity estimate for the von Neumann entropy
,”
J. Math. Phys. A: Math. Theor.
40
(
28
),
8127
8136
(
2007
).
3.
Audenaert
,
K. M. R.
and
Eisert
,
J.
, “
Continuity bounds on the quantum relative entropy
,”
J. Math. Phys.
46
,
102104
(
2005
).
4.
Audenaert
,
K. M. R.
and
Eisert
,
J.
, “
Continuity bounds on the quantum relative entropy-II
,”
J. Math. Phys.
52
,
112201
(
2011
).
5.
Audenaert
,
K. M. R.
, “
Quantum skew divergence
,”
J. Math. Phys.
55
,
112202
(
2014
).
6.
Bennett
,
C. H.
,
Shor
,
P. W.
,
Smolin
,
J. A.
, and
Thapliyal
,
A. V.
, “
Entanglement-assisted classical capacity of noisy quantum channel
,”
Phys. Rev. Lett.
83
,
3081
3084
(
1999
).
7.
Bogachev
,
V. I.
,
Measure Theory
(
Springer-Verlag
,
Berlin, Heidelberg
,
2007
).
8.
Buscemi
,
F.
,
Das
,
S.
, and
Wilde
,
M. M.
, “
Approximate reversibility in the context of entropy gain, information gain, and complite positivity
,”
Phys. Rev. A
93
(
6
),
062314
(
2016
).
9.
Dell’Antonio
,
G. F.
, “
On the limits of sequences of normal states
,”
Commun. Pure Appl. Math.
20
,
413
430
(
1967
).
10.
Devetak
,
I.
, “
The private classical capacity and quantum capacity of a quantum channel
,”
IEEE Trans. Inf. Theory
51
(
1
),
44
55
(
2005
).
11.
Devetak
,
I.
and
Yard
,
J.
, “
The operational meaning of quantum conditional information
,”
Phys. Rev. Lett.
100
,
230501
(
2008
).
12.
Fannes
,
M.
, “
A continuity property of the entropy density for spin lattice systems
,”
Commun. Math. Phys.
31
,
291
294
(
1973
).
13.
Holevo
,
A. S.
, “
Bounds for the quantity of information transmitted by a quantum communication channel
,”
Probl. Inf. Transm.
9
,
177
183
(
1973
).
14.
Holevo
,
A. S.
, “
The capacity of the quantum channel with general signal states
,”
IEEE Trans. Inf. Theory
44
(
1
),
269
273
(
1998
).
15.
Holevo
,
A. S.
,
Quantum Systems, Channels, Information. A Mathematical Introduction
(
DeGruyter
,
Berlin
,
2012
).
16.
Holevo
,
A. S.
and
Shirokov
,
M. E.
, “
Continuous ensembles and the χ-capacity of infinite dimensional channels
,”
Theory Probab. Its Appl.
50
(
1
),
86
98
(
2005
).
17.
King
,
C.
, “
The capacity of the quantum depolarizing channel
,”
IEEE Trans. Inf. Theory
49
(
1
),
221
229
(
2003
).
18.
Kuznetsova
,
A. A.
, “
Quantum conditional entropy for infinite-dimensional systems
,”
Theory Probab. Its Appl.
55
(
4
),
709
717
(
2011
).
19.
Leung
,
D.
and
Smith
,
G.
, “
Continuity of quantum channel capacities
,”
Commun. Math. Phys.
292
,
201
215
(
2009
).
20.
Lloyd
,
S.
, “
Capacity of the noisy quantum channel
,”
Phys. Rev. A
55
(
3
),
1613
1622
(
1997
).
21.
Li
,
N.
and
Luo
,
S.
, “
Classical and quantum correlative capacities of quantum systems
,”
Phys. Rev. A
84
,
042124
(
2011
).
22.
Lieb
,
E. H.
and
Ruskai
,
M. B.
, “
Proof of the strong suadditivity of quantum mechanical entropy
,”
J. Math. Phys.
14
,
1938
(
1973
).
23.
Lindblad
,
G.
, “
Entropy, information and quantum measurements
,”
Commun. Math. Phys.
33
,
305
322
(
1973
).
24.
Lindblad
,
G.
, “
Expectation and entropy inequalities for finite quantum systems
,”
Commun. Math. Phys.
39
(
2
),
111
119
(
1974
).
25.
Nielsen
,
M. A.
and
Chuang
,
I. L.
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
26.
Oreshkov
,
O.
and
Calsamiglia
,
J.
, “
Distinguishability measures between ensembles of quantum states
,”
Phys. Rev. A
79
,
032336
(
2009
).
27.
Parthasarathy
,
K.
,
Probability Measures on Metric Spaces
(
Academic Press
,
New York and London
,
1967
).
28.
Reeb
,
D.
and
Wolf
,
M. M.
, “
Tight bound on relative entropy by entropy difference
,”
IEEE Trans. Inf. Theory
61
,
1458
1473
(
2015
).
29.
Schumacher
,
B.
and
Westmoreland
,
M. D.
, “
Sending classsical information via noisy quantum channel
,”
Phys. Rev. A
56
,
131
138
(
1997
).
30.
Shirokov
,
M. E.
, “
Entropic characteristics of subsets of states I
,”
Izvestiya: Math.
70
(
6
),
1265
1292
(
2006
).
31.
Shirokov
,
M. E.
, “
Measures of correlations in infinite-dimensional quantum systems
,”
Sbornik: Math.
207
(
5
),
724
768
(
2016
).
32.
Shirokov
,
M. E.
, “
Squashed entanglement in infinite dimensions
,”
J. Math. Phys.
57
(
3
),
032203
(
2016
).
33.
Shirokov
,
M. E.
, “
Energy-constrained diamond norms and their use in quantum information theory
,” e-print arXiv:1706.00361 (v.2).
34.
Wehrl
,
A.
, “
General properties of entropy
,”
Rev. Mod. Phys.
50
,
221
250
(
1978
).
35.
Wilde
,
M. M.
,
Quantum Information Theory
(
Cambridge University Press
,
2013
).
36.
Winter
,
A.
, “
Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints
,”
Commun. Math. Phys.
347
(
1
),
291
313
(
2016
).
37.

We say that a continuity bound |f(x)f(y)|Ba(x,y),x,ySa, depending on a parameter a is tight for large a if lim supa+supx,ySa|f(x)f(y)|Ba(x,y)=1.

You do not currently have access to this content.