We add a scalar potential to the 2D Aharonov-Bohm (AB) model which properly diverges both at the solenoid border and at infinity so that the resulting operator is essentially self-adjoint and has a discrete spectrum; the former property is interpreted as no contact of the particle with the solenoid border since there is no need of boundary conditions. We study gauge transformations to get the usual periodic behavior of the AB properties as a function of the magnetic flux. The presence of the AB effect is proven through the ground state energy, which is shown to be smooth in case it is simple and with a nonzero derivative if the ground state is real valued; such properties are verified in the case of circular solenoids, for which it is shown to be a nonconstant periodic function with a minimum at integer and a maximum at half-integer circulations (at half-integer circulations, it is doubly degenerated).

1.
Adami
,
R.
and
Teta
,
A.
, “
On the Aharonov-Bohm Hamiltonian
,”
Lett. Math. Phys.
43
,
43
54
(
1998
).
2.
Aharonov
,
Y.
and
Bohm
,
D.
, “
Significance of electromagnetic potentials in the quantum theory
,”
Phys. Rev.
115
,
485
491
(
1959
).
3.
Alziary
,
B.
,
Fleckinger-Pellé
,
J.
, and
Takác
,
P.
, “
Eigenfunctions and Hardy inequalities for a magnetic Schrödinger operator in R2
,”
Math. Methods Appl. Sci.
26
,
1093
1136
(
2003
).
4.
Becker
,
M.
and
Batelaan
,
H.
, “
Experimental test for approximately dispersionless forces in the Aharonov-Bohm effect
,”
Europhys. Lett.
115
,
10011
(
2016
).
5.
Brasche
,
J. F.
and
Melgaard
,
M.
, “
The Friedrichs extension of the Aharonov-Bohm Hamiltonian on a disc
,”
Integr. Equations Oper. Theory
52
,
419
436
(
2005
).
6.
Caprez
,
A.
,
Barwick
,
B.
, and
Batelaan
,
H.
, “
Macroscopic test of the Aharonov-Bohm effect
,”
Phys. Rev. Lett.
99
,
210401
(
2007
).
7.
Clark
,
C.
, “
An embedding theorem for function spaces
,”
Pac. J. Math.
19
,
243
251
(
1965
).
8.
Colin de Verdière
,
Y.
and
Truc
,
F.
, “
Confining quantum particles with a purely magnetic field
,”
Ann. Inst. Fourier
60
,
2333
2356
(
2010
).
9.
Dabrowski
,
L.
and
Šťovíček
,
P.
, “
Aharonov-Bohm effect with δ-type interaction
,”
J. Math. Phys.
39
,
47
62
(
1998
).
10.
de Oliveira
,
C. R.
and
Pereira
,
M.
, “
Impenetrability of Aharonov-Bohm solenoids: Proof of norm resolvent convergence
,”
Lett. Math. Phys.
95
,
41
51
(
2011
).
11.
de Oliveira
,
C. R.
and
Pereira
,
M.
, “
Scattering and self-adjoint extensions of the Aharonov-Bohm Hamiltonian
,”
J. Phys. A: Math. Theor.
43
,
354011
(
2010
).
12.
Hansson
,
A. M.
, “
On the spectrum and eigenfunctions of the Schrödinger operator with Aharonov-Bohm magnetic field
,”
Int. J. Math. Math. Sci.
23
,
3751
3766
(
2005
).
13.
Helffer
,
B.
, “
Effet d’Aharonov Bohm sur un état borné de l’équation de Schrödinger
,”
Commun. Math. Phys.
119
,
315
329
(
1988
).
14.
Helffer
,
B.
,
Hoffmann-Ostenhof
,
M.
,
Hoffmann-Ostenhof
,
T.
, and
Owen
,
M. P.
, “
Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non simply connected domains
,”
Commun. Math. Phys.
202
,
629
649
(
1999
).
15.
Kato
,
T.
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer
,
Berlin
,
1979
).
16.
Kretzschmar
,
M.
, “
Aharonov-Bohm scattering of a wave packet of finite extension
,”
Z. Phys.
185
,
84
96
(
1965
).
17.
Lavine
,
R.
and
O’Carroll
,
M.
, “
Ground state properties and lower bounds for energy levels of a particle in a uniform magnetic field and external potential
,”
J. Math. Phys.
18
,
1908
1912
(
1977
).
18.
Lewis
,
R. T.
, “
Singular elliptic operators of second order with purely discrete spectra
,”
Trans. Am. Math. Soc.
271
,
653
666
(
1982
).
19.
Magni
,
C.
and
Valz-Gris
,
F.
, “
Can elementary quantum mechanics explain the Aharonov-Bohm effect?
,”
J. Math. Phys.
36
,
177
186
(
1995
).
20.
Nenciu
,
G.
and
Nenciu
,
I.
, “
On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in Rn
,”
Ann. Henri Poincare
10
,
377
394
(
2009
).
21.
Peshkin
,
M.
, “
Aharonov-Bohm effect in bound states: Theoretical and experimental status
,”
Phys. Rev. A
23
,
360
361
(
1981
).
22.
Peshkin
,
M.
and
Tonomura
,
A.
,
The Aharonov-Bohm Effect, LNP340
(
Springer
,
Berlin
,
1989
).
23.
Ruijsenaars
,
S. N. M.
, “
The Aharonov-Bohm effect and scattering theory
,”
Ann. Phys.
146
,
1
34
(
1983
).
You do not currently have access to this content.