We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.
REFERENCES
1.
Adams
, E. E.
and Gelhar
, L. W.
, “Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis
,” Water Resour. Res.
28
, 3293
–3307
, doi:10.1029/92WR01757 (1992
).2.
Arridge
, S. R.
and Schotland
, J. C.
, “Optical tomography: Forward and inverse problems
,” Inverse Probl.
25
, 123010
(2009
).3.
Caputo
, M.
, “Linear model of dissipation whose Q is almost frequency independent-II
,” Geophys. J. Int.
13
, 529
–539
(1967
).4.
Eidelman
, S. D.
and Kochubei
, A. N.
, “Cauchy problem for fractional diffusion equations
,” J. Differential Equations
199
, 211
–255
(2004
).5.
Erdélyi
, A.
, Magnus
, W.
, Oberhettinger
, F.
, and Tricomi
, F. G.
, Higher Transcendental Functions
(McGraw-Hill
, 1955
), Vol. 3
.6.
Fomin
, S. A.
, Chugunov
, V. A.
, and Hashida
, T.
, “Non-Fickian mass transport in fractured porous media
,” Adv. Water Resour.
34
, 205
–214
(2011
).7.
Garcia
, R. D. M.
and Siewert
, C. E.
, “On discrete spectrum calculations in radiative transfer
,” J. Quant. Spectrosc. Radiat. Transfer
42
, 385
–394
(1989
).8.
Gershenson
, M.
, “Time-dependent equation for the intensity in the diffusion limit using a higher-order angular expansion
,” Phys. Rev. E
59
, 7178
–7184
(1999
).9.
Gorenflo
, R.
, Loutchko
, J.
, and Luchko
, Y.
, “Computation of the Mittag-Leffler function Eα,β(z) and its derivative
,” Fract. Calc. Appl. Anal.
5
, 491
–518
(2002
).10.
Gorenflo
, R.
, Luchko
, Y.
, and Yamamoto
, M.
, “Time-fractional diffusion equation in the fractional Sobolev spaces
,” Fract. Calc. Appl. Anal.
18
, 799
–820
(2015
).11.
Hatano
, Y.
and Hatano
, N.
, “Dispersive transport of ions in column experiments: An explanation of long-tailed profiles
,” Water Resour. Res.
34
, 1027
–1033
, doi:10.1029/98WR00214 (1998
).12.
Henry
, B. I.
, Langlands
, T. A. M.
, and Wearne
, S. L.
, “Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations
,” Phys. Rev. E
74
, 031116
(2006
).13.
Hornung
, G.
, Berkowitz
, B.
, and Barkai
, N.
, “Morphogen gradient formation in a complex environment: An anomalous diffusion model
,” Phys. Rev. E
72
, 041916
(2005
).14.
Jin
, B.
and Rundell
, W.
, “A tutorial on inverse problems for anomalous diffusion processes
,” Inverse Probl.
31
, 035003
(2015
).15.
Kadem
, A.
, Luchko
, Y.
, and Baleanu
, D.
, “Spectral method for solution of the fractional transport equation
,” Rep. Math. Phys.
66
, 103
–115
(2010
).16.
Kochubei
, A. N.
, “Distributed order calculus and equations of ultraslow diffusion
,” J. Math. Anal. Appl.
340
, 252
–281
(2008
).17.
Langlands
, T. A. M.
, Henry
, B. I.
, and Wearne
, S. L.
, “Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions
,” J. Math. Biol.
59
, 761
–808
(2009
).18.
Larsen
, E. W.
and Keller
, J. B.
, “Asymptotic solution of neutron transport problems for small mean free paths
,” J. Math. Phys.
15
, 75
–81
(1974
).19.
Li
, Z.
, Liu
, Y.
, and Yamamoto
, M.
, “Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients
,” Appl. Math. Comput.
257
, 381
–397
(2015
).20.
Li
, Z.
, Luchko
, Y.
, and Yamamoto
, M.
, “Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations
,” Fract. Calc. Appl. Anal.
17
, 1114
–1136
(2014
).21.
Liemert
, A.
and Kienle
, A.
, “Infinite space Green’s function of the time-dependent radiative transfer equation
,” Biomed. Opt. Express
3
, 543
–551
(2012
).22.
Lin
, Y.
and Xu
, C.
, “Finite difference/spectral approximations for the time-fractional diffusion equation
,” J. Comput. Phys.
225
, 1533
–1552
(2007
).23.
Luchko
, Y.
, “Maximum principle for the generalized time-fractional diffusion equation
,” J. Math. Anal. Appl.
351
, 218
–223
(2009
).24.
Luchko
, Y.
, “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation
,” Comput. Math. Appl.
59
, 1766
–1772
(2010
).25.
Luchko
, Y.
, “Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
,” J. Math. Anal. Appl.
374
, 538
–548
(2011
).26.
Luchko
, Y.
, “Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation
,” Fract. Calc. Appl. Anal.
15
, 141
–160
(2012
).27.
Mainardi
, F.
, “The fundamental solutions for the fractional diffusion-wave equation
,” Appl. Math. Lett.
9
, 23
–28
(1996
).28.
Mainardi
, F.
, Luchko
, Y.
, and Pagnini
, G.
, “The fundamental solution of the space-time fractional diffusion equation
,” Fract. Calc. Appl. Anal.
4
, 153
–192
(2001
).29.
Mellet
, A.
, “Fractional diffusion limit for collisional kinetic equations: A moments method
,” Indiana Univ. Math. J.
59
, 1333
–1360
(2010
).30.
Mellet
, A.
, Mischler
, S.
, and Mouhot
, C.
, “Fractional diffusion limit for collisional kinetic equations
,” Arch. Ration. Mech. Anal.
199
, 493
–525
(2011
).31.
Metzler
, R.
and Klafter
, J.
, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,” Phys. Rep.
339
, 1
–77
(2000
).32.
Metzler
, R.
and Klafter
, J.
, “The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
,” J. Phys. A: Math. Gen.
37
, R161
–R208
(2004
).33.
Metzler
, R.
, Jeon
, J.-H.
, Cherstvya
, A. G.
, and Barkaid
, E.
, “Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,” Phys. Chem. Chem. Phys.
16
, 24128
–24164
(2014
).34.
Panasyuk
, G.
, Schotland
, J. C.
, and Markel
, V. A.
, “Radiative transport equation in rotated reference frames
,” J. Phys. A: Math. Gen.
39
, 115
–137
(2006
).35.
36.
Ryzhik
, L.
, Papanicolaou
, G.
, and Keller
, J. B.
, “Transport equations for elastic and other waves in random media
,” Wave Motion
24
, 327
–370
(1996
).37.
Sakamoto
, K.
and Yamamoto
, M.
, “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
,” J. Math. Anal. Appl.
382
, 426
–447
(2011
).38.
Samko
, S. G.
, Kilbas
, A. A.
, and Marichev
, O. I.
, Fractional Integrals and Derivatives: Theory and Applications
(Gordon and Breach Science
, 1993
).39.
Sokolov
, I.
, Klafter
, J.
, and Blumen
, A.
, “Fractional kinetics
,” Phys. Today
55
(11
), 48
–54
(2002
).40.
Williams
, M. M. R.
, “Stochastic problems in the transport of radioactive nuclides in fractured rock
,” Nucl. Sci. Eng.
112
, 215
–230
(1992
).41.
Williams
, M. M. R.
, “Radionuclide transport in fractured rock a new model: Application and discussion
,” Ann. Nucl. Energy
20
, 279
–297
(1993
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.