We consider the radiative transport equation in which the time derivative is replaced by the Caputo derivative. Such fractional-order derivatives are related to anomalous transport and anomalous diffusion. In this paper we describe how the time-fractional radiative transport equation is obtained from continuous-time random walk and see how the equation is related to the time-fractional diffusion equation in the asymptotic limit. Then we solve the equation with Legendre-polynomial expansion.

1.
Adams
,
E. E.
and
Gelhar
,
L. W.
, “
Field study of dispersion in a heterogeneous aquifer 2. Spatial moments analysis
,”
Water Resour. Res.
28
,
3293
3307
, doi:10.1029/92WR01757 (
1992
).
2.
Arridge
,
S. R.
and
Schotland
,
J. C.
, “
Optical tomography: Forward and inverse problems
,”
Inverse Probl.
25
,
123010
(
2009
).
3.
Caputo
,
M.
, “
Linear model of dissipation whose Q is almost frequency independent-II
,”
Geophys. J. Int.
13
,
529
539
(
1967
).
4.
Eidelman
,
S. D.
and
Kochubei
,
A. N.
, “
Cauchy problem for fractional diffusion equations
,”
J. Differential Equations
199
,
211
255
(
2004
).
5.
Erdélyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
,
Higher Transcendental Functions
(
McGraw-Hill
,
1955
), Vol.
3
.
6.
Fomin
,
S. A.
,
Chugunov
,
V. A.
, and
Hashida
,
T.
, “
Non-Fickian mass transport in fractured porous media
,”
Adv. Water Resour.
34
,
205
214
(
2011
).
7.
Garcia
,
R. D. M.
and
Siewert
,
C. E.
, “
On discrete spectrum calculations in radiative transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
42
,
385
394
(
1989
).
8.
Gershenson
,
M.
, “
Time-dependent equation for the intensity in the diffusion limit using a higher-order angular expansion
,”
Phys. Rev. E
59
,
7178
7184
(
1999
).
9.
Gorenflo
,
R.
,
Loutchko
,
J.
, and
Luchko
,
Y.
, “
Computation of the Mittag-Leffler function Eα,β(z) and its derivative
,”
Fract. Calc. Appl. Anal.
5
,
491
518
(
2002
).
10.
Gorenflo
,
R.
,
Luchko
,
Y.
, and
Yamamoto
,
M.
, “
Time-fractional diffusion equation in the fractional Sobolev spaces
,”
Fract. Calc. Appl. Anal.
18
,
799
820
(
2015
).
11.
Hatano
,
Y.
and
Hatano
,
N.
, “
Dispersive transport of ions in column experiments: An explanation of long-tailed profiles
,”
Water Resour. Res.
34
,
1027
1033
, doi:10.1029/98WR00214 (
1998
).
12.
Henry
,
B. I.
,
Langlands
,
T. A. M.
, and
Wearne
,
S. L.
, “
Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations
,”
Phys. Rev. E
74
,
031116
(
2006
).
13.
Hornung
,
G.
,
Berkowitz
,
B.
, and
Barkai
,
N.
, “
Morphogen gradient formation in a complex environment: An anomalous diffusion model
,”
Phys. Rev. E
72
,
041916
(
2005
).
14.
Jin
,
B.
and
Rundell
,
W.
, “
A tutorial on inverse problems for anomalous diffusion processes
,”
Inverse Probl.
31
,
035003
(
2015
).
15.
Kadem
,
A.
,
Luchko
,
Y.
, and
Baleanu
,
D.
, “
Spectral method for solution of the fractional transport equation
,”
Rep. Math. Phys.
66
,
103
115
(
2010
).
16.
Kochubei
,
A. N.
, “
Distributed order calculus and equations of ultraslow diffusion
,”
J. Math. Anal. Appl.
340
,
252
281
(
2008
).
17.
Langlands
,
T. A. M.
,
Henry
,
B. I.
, and
Wearne
,
S. L.
, “
Fractional cable equation models for anomalous electrodiffusion in nerve cells: Infinite domain solutions
,”
J. Math. Biol.
59
,
761
808
(
2009
).
18.
Larsen
,
E. W.
and
Keller
,
J. B.
, “
Asymptotic solution of neutron transport problems for small mean free paths
,”
J. Math. Phys.
15
,
75
81
(
1974
).
19.
Li
,
Z.
,
Liu
,
Y.
, and
Yamamoto
,
M.
, “
Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients
,”
Appl. Math. Comput.
257
,
381
397
(
2015
).
20.
Li
,
Z.
,
Luchko
,
Y.
, and
Yamamoto
,
M.
, “
Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations
,”
Fract. Calc. Appl. Anal.
17
,
1114
1136
(
2014
).
21.
Liemert
,
A.
and
Kienle
,
A.
, “
Infinite space Green’s function of the time-dependent radiative transfer equation
,”
Biomed. Opt. Express
3
,
543
551
(
2012
).
22.
Lin
,
Y.
and
Xu
,
C.
, “
Finite difference/spectral approximations for the time-fractional diffusion equation
,”
J. Comput. Phys.
225
,
1533
1552
(
2007
).
23.
Luchko
,
Y.
, “
Maximum principle for the generalized time-fractional diffusion equation
,”
J. Math. Anal. Appl.
351
,
218
223
(
2009
).
24.
Luchko
,
Y.
, “
Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation
,”
Comput. Math. Appl.
59
,
1766
1772
(
2010
).
25.
Luchko
,
Y.
, “
Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
,”
J. Math. Anal. Appl.
374
,
538
548
(
2011
).
26.
Luchko
,
Y.
, “
Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation
,”
Fract. Calc. Appl. Anal.
15
,
141
160
(
2012
).
27.
Mainardi
,
F.
, “
The fundamental solutions for the fractional diffusion-wave equation
,”
Appl. Math. Lett.
9
,
23
28
(
1996
).
28.
Mainardi
,
F.
,
Luchko
,
Y.
, and
Pagnini
,
G.
, “
The fundamental solution of the space-time fractional diffusion equation
,”
Fract. Calc. Appl. Anal.
4
,
153
192
(
2001
).
29.
Mellet
,
A.
, “
Fractional diffusion limit for collisional kinetic equations: A moments method
,”
Indiana Univ. Math. J.
59
,
1333
1360
(
2010
).
30.
Mellet
,
A.
,
Mischler
,
S.
, and
Mouhot
,
C.
, “
Fractional diffusion limit for collisional kinetic equations
,”
Arch. Ration. Mech. Anal.
199
,
493
525
(
2011
).
31.
Metzler
,
R.
and
Klafter
,
J.
, “
The random walk’s guide to anomalous diffusion: A fractional dynamics approach
,”
Phys. Rep.
339
,
1
77
(
2000
).
32.
Metzler
,
R.
and
Klafter
,
J.
, “
The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
,”
J. Phys. A: Math. Gen.
37
,
R161
R208
(
2004
).
33.
Metzler
,
R.
,
Jeon
,
J.-H.
,
Cherstvya
,
A. G.
, and
Barkaid
,
E.
, “
Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
,”
Phys. Chem. Chem. Phys.
16
,
24128
24164
(
2014
).
34.
Panasyuk
,
G.
,
Schotland
,
J. C.
, and
Markel
,
V. A.
, “
Radiative transport equation in rotated reference frames
,”
J. Phys. A: Math. Gen.
39
,
115
137
(
2006
).
35.
Podlubny
,
I.
,
Fractional Differential Equations
(
Academic Press
,
1999
).
36.
Ryzhik
,
L.
,
Papanicolaou
,
G.
, and
Keller
,
J. B.
, “
Transport equations for elastic and other waves in random media
,”
Wave Motion
24
,
327
370
(
1996
).
37.
Sakamoto
,
K.
and
Yamamoto
,
M.
, “
Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
,”
J. Math. Anal. Appl.
382
,
426
447
(
2011
).
38.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach Science
,
1993
).
39.
Sokolov
,
I.
,
Klafter
,
J.
, and
Blumen
,
A.
, “
Fractional kinetics
,”
Phys. Today
55
(
11
),
48
54
(
2002
).
40.
Williams
,
M. M. R.
, “
Stochastic problems in the transport of radioactive nuclides in fractured rock
,”
Nucl. Sci. Eng.
112
,
215
230
(
1992
).
41.
Williams
,
M. M. R.
, “
Radionuclide transport in fractured rock a new model: Application and discussion
,”
Ann. Nucl. Energy
20
,
279
297
(
1993
).
You do not currently have access to this content.