The conjectures of Alday et al. [Lett. Math. Phys. 91, 167–197 (2010)] and their generalizations have been mathematically formulated as the existence of an action of a W-algebra on the cohomology or K-theory of the instanton moduli space, together with a Whitaker vector [A. Braverman et al., e-print arXiv:1406.2381 (2014); D. Maulik and A. Okounkov, e-print arXiv:1211.1287 (2012), pp. 1–276; O. Schiffmann and E. Vasserot, Publ. Math. Inst. Hautes Etud. Sci. 118, 213–342 (2013)]. However, the original conjectures also predict intertwining properties with the natural higher rank version of the “Ext1 operator” which was previously studied by Okounkov and the author in Carlsson and Okounkov [Duke Math. J. 161, 1797–1815 (2012)], a result which is now sometimes referred to as AGT in rank one [A. Alba et al., Lett. Math. Phys. 98, 33–64 (2011); M. Pedrini et al., J. Geom. Phys. 103, 43–89 (2016)]. Physically, this corresponds to incorporating matter in the Nekrasov partition functions, an obviously important feature in the physical theory. It is therefore of interest to study how the Ext1 operator relates to the aforementioned structures on cohomology in higher rank, and if possible to find a formulation from which the AGT conjectures follow as a corollary. In this paper, we carry out something analogous using a modified Segal-Sugawara construction for the s l ˆ 2 C structure that appears in Nekrasov and Okounkov [Prog. Math. 244, 525–596 (2006)] for general rank. This immediately implies the AGT identities when the central charge is one, a case which is of particular interest for string theorists, and because of the natural appearance of the Seiberg-Witten curve in this setup, see, for instance, Dijkgraaf and Vafa [e-print arXiv:0909.2453 (2009).] as well as Iqbal et al. [J. High Energy Phys. 2009, 69].

1.
Alba
,
A.
,
Fateev
,
V. A.
,
Litvinov
,
A. V.
, and
Tarnopolsky
,
G. M.
, “
On combinatorial expansion of the conformal blocks arising from AGT conjecture
,”
Lett. Math. Phys.
98
,
33
64
(
2011
).
2.
Alday
,
L. F.
,
Gaiotto
,
D.
, and
Tachikawa
,
Y.
, “
Liouville correlation functions from four-dimensional gauge theories
,”
Lett. Math. Phys.
91
,
167
197
(
2010
).
3.
Atiyah
,
M. F.
and
Bott
,
R.
, “
The moment map and equivariant cohomology
,”
Topology
23
,
1
28
(
1994
).
4.
Atiyah
,
M. F.
,
Drinfeld
,
V.
,
Hitchin
,
N. J.
, and
Manin
,
Y. I.
, “
Construction of instantons
,”
Phys. Lett. A
65
,
185
187
(
1978
).
5.
Ben-Zvi
,
D.
and
Frenkel
,
E.
,
Vertex Algebras and Algebraic Curves
,
Mathematical Surveys and Monographs
Vol.
88
(
American Mathematical Society
,
2001
).
6.
Bloch
,
S.
and
Okounkov
,
A.
, “
The character of the infinite wedge representation
,”
Adv. Math.
149
,
1
60
(
2000
).
7.
Braverman
,
A.
,
Finkelberg
,
M. V.
, and
Nakajima
,
H.
, “
Instanton moduli spaces and W-algebras
,” e-print arXiv:1406.2381 (2014).
8.
Carlsson
,
E.
, “
Vertex operators and quasimodularity of Chern numbers on the Hilbert scheme
,”
Adv. Math.
229
(
5
),
2888
2907
(
2012
).
9.
Carlsson
,
E.
,
Nekrasov
,
N.
, and
Okounkov
,
A.
, “
Five-dimensional gauge theories and vertex operators
,”
Moscow Math. J.
14
,
39
61
(
2014
).
10.
Carlsson
,
E.
and
Okounkov
,
A.
, “
Exts and vertex operators
,”
Duke Math. J.
161
,
1797
1815
(
2012
).
11.
Dijkgraaf
,
R.
and
Vafa
,
C.
, “
Toda theories, matrix models, topological strings, and n = 2 gauge systems
,” e-print arXiv:0909.2453 (2009).
12.
Donalson
,
S.
and
Kronheimer
,
P. B.
,
The Geometry of Four-Manifolds
,
Oxford Mathematical Monographs
(
Oxford University Press
,
1990
).
13.
Guillemin
,
V. W.
and
Sternberg
,
S.
,
Supersymmetry and Equivariant de Rahm Theory
(
Springer-Verlag
,
Berlin Heidelberg
,
1999
).
14.
Hori
,
K.
,
Katz
,
S.
,
Klemm
,
A.
,
Pandharipande
,
R.
,
Thomas
,
R.
,
Vafa
,
C.
,
Vakil
,
R.
, and
Zaslow
,
E.
,
Mirror Symmetry
,
Clay Mathematics Monographs
Vol.
1
(
American Mathematical Society
,
2003
).
15.
Huybrechts
,
D.
and
Lehn
,
M.
,
The Geometry of Moduli Spaces of Sheaves
, 2nd ed. (
Cambridge University Press
,
2010
).
16.
Iqbal
,
A.
,
Kozcaz
,
C.
, and
Vafa
,
C.
, “
The refined topological vertex
,”
J. High Energy Phys.
2009
,
69
.
17.
Kaç
,
V.
,
Infinite-Dimensional Lie Algebras
(
Cambridge University Press
,
1994
).
18.
Lepowsky
,
J.
and
Wilson
,
R.
, “
Construction of the affine Lie algebra A(1)
,”
Commun. Math. Phys.
62
(
1
),
43
53
(
1978
).
19.
MacDonald
,
I. G.
,
Symmetric Functions and Hall Polynomials
,
Oxford Mathematical Monographs
(
Clarendon Press
,
Oxford
,
1995
).
20.
Maulik
,
D.
and
Okounkov
,
A.
, “
Quantum groups and quantum cohomology
,” e-print arXiv:1211.1287 (2012), pp. 1–276.
21.
Mironov
,
A.
,
Morozov
,
A.
, and
Shakirov
,
Sh.
, “
A direct proof of AGT conjecture at β = 1
,”
J. High Energy Phys.
67
,
1
41
(
2011
).
22.
Mironov
,
A.
,
Mironov
,
S.
,
Morozov
,
A. Yu.
, and
Morozov
,
A. A.
, “
CFT exercises for the needs of AGT
,”
Theor. Math. Phys.
165
,
1662
1698
(
2010
).
23.
Nakajima
,
H.
, “
Heisenberg algebra and Hilbert schemes of points on projective surfaces
,”
Ann. Math.
145
,
379
(
1997
).
24.
Nakajima
,
H.
,
Lectures on Hilbert Schemes of Points on Surfaces
,
University Lecture Series
(
American Mathematical Society
,
1999
).
25.
Negut
,
A.
, “
Exts and the AGT relations
,”
Lett. Math. Phys.
106
(
9
),
1265
1316
(
2016
).
26.
Nekrasov
,
N.
, “
Seiberg-Witten theory from instanton counting
,”
Adv. Theor. Math. Phys.
7
,
831
864
(
2004
).
27.
Nekrasov
,
N.
and
Okounkov
,
A.
, “
Seiberg-Witten theory and random partitions
,”
Prog. Math.
244
,
525
596
(
2006
).
28.
Okounkov
,
A.
, “
Random partitions and instanton counting
,” in
Proceedings of the International Congress of Mathematicians (ICM)
(
European Mathematical Society
,
2006
).
29.
Pedrini
,
M.
,
Sala
,
F.
, and
Szabo
,
R. J.
, “
AGT relations for abelian quiver gauge theories on ALE spaces
,”
J. Geom. Phys.
103
,
43
89
(
2016
).
30.
Rodger
,
R.
, “
A pedagogical introduction to the AGT conjecture
,” M.S. thesis,
Universiteit Utrecht
,
2013
.
31.
Schiffmann
,
O.
and
Vasserot
,
E.
, “
Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2
,”
Publ. Math. Inst. Hautes Etud. Sci.
118
,
213
342
(
2013
).
32.
Teschner
,
J.
, “
A lecture on the Liouville vertex operators
,”
Int. J. Mod. Phys. A
19
,
436
(
2004
).
33.
Witten
,
E.
, “
Conformal field theory in four and six dimensions
,” in
Topology, Geometry and Quantum Field Theory
,
London Mathematical Society Lecture Note Series
(
Cambridge University Press
,
2004
).
You do not currently have access to this content.