We introduce a Hartmann system in the generalized Taub-NUT space with Abelian monopole interaction. This quantum system includes well known Kaluza-Klein monopole and MIC-Zwanziger monopole as special cases. It is shown that the corresponding Schrödinger equation of the Hamiltonian is separable in both spherical and parabolic coordinates. We obtain the integrals of motion of this superintegrable model and construct the quadratic algebra and Casimir operator. This algebra can be realized in terms of a deformed oscillator algebra and has finite dimensional unitary representations (unirreps) which provide energy spectra of the system. This result coincides with the physical spectra obtained from the separation of variables.
REFERENCES
1.
P. M.
Dirac
, “Quantised singularities in the electromagnetic field
,” Proc. R. Soc. London, Ser. A
133
, 60
(1931
).2.
H. V.
McIntosh
and A.
Cisneros
, “Degeneracy in presence of a magnetic monopole
,” J. Math. Phys.
11
, 896
(1970
).3.
D.
Zwanziger
, “Exactly soluble nonrelativistic model of particles with both electric and magnetic charges
,” Phys. Rev.
176
, 1480
(1968
).4.
A. O.
Barut
, C. K.
Schneider
, and R.
Wilson
, “Quantum theory of infinite component fields
,” J. Math. Phys.
20
, 2244
(1979
).5.
R.
Jackiw
, “Dynamical symmetry of the magnetic monopole
,” Ann. Phys.
129
, 183
(1980
).6.
G.
Meng
, “MICZ-Kepler problems in all dimensions
,” J. Phys. Math.
48
, 032105
(2007
).7.
C. N.
Yang
, “Generalization of Dirac’s monopole to SU(2) gauge fields
,” J. Math. Phys.
19
, 320
(1978
).8.
L. G.
Mardoyan
, A. N.
Sissakian
, and V. M.
Ter-Antonyan
, “Hidden symmetry of the Yang Coulomb monopole
,” Mod. Phys. Lett. A
14
, 1303
(1999
).9.
A.
Nersessian
and G.
Pogosyan
, “Relation of the oscillator and Coulomb systems on spheres and pseudospheres
,” Phys. Rev. A
63
, 020103
(2001
).10.
L. G.
Mardoyan
, “Five-dimensional su(2)-monopole: Continuous spectrum
,” Phys. At. Nucl.
65
, 1096
(2002
).11.
T.
Kaluza
, “Zum unitatsproblem in der physik
,” Sitzungsber. Preuss. Akad. Wiss. Phys. Math.
K1
, 996
(1921
).12.
O.
Klein
, “Quantentheorie und fiinfdimensionale relativitatstheorie
,” Z. Phys.
37
, 895
(1926
).13.
D. J.
Gross
and M. J.
Perry
, “Magnetic monopoles in Kaluza-Klein theories
,” Nucl. Phys. B
226
, 29
(1983
).14.
G. W.
Gibbons
and N. S.
Manton
, “Hidden symmetry of hyperbolic monopole motion
,” Nucl. Phys. B
274
, 183
(1986
).15.
L. Gy.
Feher
and P. A.
Horvathy
, “Dynamical symmetry of monopole scattering
,” Phys. Lett. B
183
, 182
(1987
).16.
B.
Cordani
, L. Gy.
Feher
, and P. A.
Horvathy
, “O(4, 2) dynamical symmetry of the Kaluza-Klein monopole
,” Phys. Lett. B
201
, 481
(1988
).17.
N. S.
Manton
, “Monopole interactions at long range
,” Phys. Lett. B
154
, 397
(1985
).18.
M. F.
Atiyah
and N.
Hitchin
, “Low energy scattering of non-abelian monopoles
,” Phys. Lett. A
197
, 21
(1985
).19.
C.
Grosche
, G. S.
Pogosyan
, and A. N.
Sissakian
, “On the interbasis expansion for the Kaluza-Klein monopole system
,” Ann. Phys.
6
, 144
(1997
).20.
I.
Cotaescu
and M.
Visinescu
, “Schrodinger quantum modes on the Taub-Nut background
,” Mod. Phys. Lett. A
15
, 145
(2000
).21.
I.
Marquette
, “Generalized Kaluza-Klein monopole, quadratic algebras and ladder operators
,” J. Phys. A: Math. Theor.
44
, 235203
(2011
).22.
T.
Iwai
and Y.
Uwano
, “The four-dimensional conformal Kepler problem reduces to the three-dimensional Kepler problem with a centrifugal potential and Dirac’s monopole field. Classical theory
,” J. Math. Phys.
27
, 1523
(1986
).23.
T.
Iwai
and N.
Katayama
, “On extended Taub-NUT metrics
,” J. Geom. Phys.
12
, 55
(1993
).24.
T.
Iwai
and N.
Katayama
, “Two kinds of generalized Taub-Nut metrics and the symmetry of associated dynamical systems
,” J. Phys. A: Math. Gen.
27
, 3179
(1994
).25.
T.
Iwai
, Y.
Uwano
, and N.
Katayama
, “Quantization of the multifold Kepler system
,” J. Math. Phys.
37
, 608
(1996
).26.
L. G.
Mardoyan
, “The generalized MIC-Kepler system
,” J. Math. Phys.
44
, 4981
(2003
).27.
I.
Fris
, V.
Mandrosov
, Ya. A.
Smorodinsky
, M.
Uhlir
, and P.
Winternitz
, “On higher symmetries in quantum mechanics
,” Phys. Lett.
16
, 354
(1965
).28.
N. W.
Evans
, “Group theory of the Smorodinsky-Winternitz system
,” J. Math. Phys.
32
, 3369
(1991
).29.
G. P.
Ranjan
, “Supersymmetric quantum mechanical generalized MIC-Kepler system
,” Mod. Phys. Lett. A
23
, 895
(2008
).30.
V. V.
Gritsev
, Y. A.
Kurochkin
, and V. S.
Otchik
, “Nonlinear symmetry algebra of the MIC-Kepler problem on the sphere S3
,” J. Phys. A: Math. Gen.
33
, 4903
(2000
).31.
Ya. I.
Granovskii
, A. S.
Zhedanov
, and I. M.
Lutzenko
, “Quadratic algebra as a ‘hidden’ symmetry of the Hartmann potential
,” J. Phys. A: Math. Gen.
24
, 3887
(1991
).32.
C.
Daskaloyannis
, “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems
,” J. Math. Phys.
42
, 1100
(2001
).33.
E. G.
Kalnins
, J. M.
Kress
, and W.
Miller
, Jr., “Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems
,” J. Math. Phys.
47
, 093501
(2006
).34.
E. G.
Kalnins
, W.
Miller
, Jr., and S.
Post
, “Models for quadratic algebras associated with second order superintegrable systems in 2D
,” SIGMA
4
, 008
(2008
).35.
Y.
Tanoudis
and C.
Daskaloyannis
, “Algebraic calculation of the energy eigenvalues for the nondegenerate three-dimensional Kepler-Coulomb potential
,” SIGMA
7
, 054
(2011
).36.
W.
Miller
, Jr., S.
Post
, and P.
Winternitz
, “Classical and quantum superintegrability with applications
,” J. Phys. A: Math. Theor.
46
, 423001
(2013
).37.
P. S.
Isaac
and I.
Marquette
, “On realizations of polynomial algebras with three generators via deformed oscillator algebras
,” J. Phys. A: Math. Theor.
47
, 205203
(2014
).38.
V. X.
Genest
, L.
Vinet
, and A.
Zhedanov
, “The Racah algebra and superintegrable models
,” J. Phys.: Conf. Ser.
512
, 012011
(2014
).39.
M. F.
Hoque
, I.
Marquette
, and Y.-Z.
Zhang
, “Quadratic algebra structure and spectrum of a new superintegrable system in N-dimension
,” J. Phys. A: Math. Theor.
48
, 185201
(2015
).40.
M. F.
Hoque
, I.
Marquette
, and Y.-Z.
Zhang
, “A new family of N dimensional superintegrable double singular oscillators and quadratic algebra Q(3) ⊕ so(n) ⊕ so(N − n)
,” J. Phys. A: Math. Theor.
48
, 445207
(2015
).41.
H.
Hartmann
, “Die bewegung eines körpers in einem ringförmigen potentialfeld
,” Theor. Chim. Acta
24
, 201
(1972
).42.
C.
Daskaloyannis
, “Generalized deformed oscillator and nonlinear algebras
,” J. Phys. A: Math. Gen.
24
, L789
(1991
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.