We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint arXiv:1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.

1.
N.
Sharma
, preprint arXiv:1404.5940 [quant-ph] (
2014
).
2.
J.
Wolfowitz
,
Coding Theorems of Information Theory
(
Springer
,
Berlin-Göttingen-Heidelberg
,
1961
), Vol.
31
.
3.
S.
Arimoto
,
IEEE Trans. Inf. Theory
19
,
357
(
1973
).
4.
Y.
Polyanskiy
and
S.
Verdú
,
48th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
(
IEEE
,
2010
), pp.
1327
1333
.
5.
T.
Ogawa
and
H.
Nagaoka
,
IEEE Trans. Inf. Theory
45
,
2486
(
1999
); e-print arXiv:quant-ph/9808063.
6.
A.
Winter
,
IEEE Trans. Inf. Theory
45
,
2481
(
1999
); e-print arXiv:1409.2536 [quant-ph].
7.
H.
Nagaoka
,
ERATO Conference on Quantum Information Science (EQIS)
(
World Scientific
,
2001
), Vol.
33
.
8.
S. L.
Fong
and
V. Y.
Tan
, preprint arXiv:1407.2417 [cs.IT] (
2014
).
10.
M.
Müller-Lennert
,
F.
Dupuis
,
O.
Szehr
,
S.
Fehr
, and
M.
Tomamichel
,
J. Math. Phys.
54
,
122203
(
2013
); e-print arXiv:1306.3142 [quant-ph].
11.
M. M.
Wilde
,
A.
Winter
, and
D.
Yang
,
Commun. Math. Phys.
331
,
593
(
2014
); e-print arXiv:1306.1586 [quant-ph].
12.
R. L.
Frank
and
E. H.
Lieb
,
J. Math. Phys.
54
,
122201
(
2013
); e-print arXiv:1306.5358 [math-ph].
13.
S.
Beigi
,
J. Math. Phys.
54
,
122202
(
2013
); e-print arXiv:1306.5920 [quant-ph].
14.
R.
König
and
S.
Wehner
,
Phys. Rev. Lett.
103
,
070504
(
2009
); e-print arXiv:0903.2838 [quant-ph].
15.
M.
Tomamichel
,
M. M.
Wilde
, and
A.
Winter
,
IEEE International Symposium on Information Theory (ISIT)
(
IEEE
,
2015
), pp.
2386
2390
); e-print arXiv:1406.2946 [quant-ph].
16.
M.
Mosonyi
and
T.
Ogawa
,
Commun. Math. Phys.
334
,
1617
(
2015
); e-print arXiv:1309.3228 [quant-ph].
17.
T.
Cooney
,
M.
Mosonyi
, and
M. M.
Wilde
,
Commun. Math. Phys.
344
,
797
(
2014
); e-print arXiv:1408.3373 [quant-ph].
18.
M.
Hayashi
and
M.
Tomamichel
,
IEEE International Symposium on Information Theory (ISIT)
(
IEEE
,
2015
), pp.
1447
1451
; e-print arXiv:1408.6894 [quant-ph].
19.
M.
Hayashi
,
M.
Koashi
,
K.
Matsumoto
,
F.
Morikoshi
, and
A.
Winter
,
J. Phys. A: Math. Gen.
36
,
527
(
2002
); e-print arXiv:quant-ph/0206097.
20.
M.
Hayashi
,
Quantum Information
(
Springer-Verlag
,
Berlin, Heidelberg
,
2006
).
21.
A.
Winter
, private communication (
2014
).
22.
M.
Berta
, “
Single-shot quantum state merging
,” Master’s thesis,
ETH Zürich
,
2009
; e-print arXiv:0912.4495 [quant-ph].
23.
M.
Tomamichel
, “
A framework for non-asymptotic quantum information theory
,” Ph.D. thesis,
ETH Zürich
,
2012
; e-print arXiv:1203.2142 [quant-ph].
24.
R.
Renner
, “
Security of quantum key distribution
,” Ph.D. thesis,
ETH Zürich
,
2005
; e-print arXiv:quant-ph/0512258.
25.
M.
Berta
,
M.
Christandl
, and
D.
Touchette
, preprint arXiv:1409.4338v2 [quant-ph].
26.
W.
van Dam
and
P.
Hayden
, preprint arXiv:quant-ph/0204093 (
2002
).
28.
29.
M.
Berta
,
M.
Christandl
, and
D.
Touchette
,
IEEE Trans. Inf. Theory
62
,
1425
(
2016
); e-print arXiv:1409.4338 [quant-ph].
30.
M. M.
Wilde
,
P.
Hayden
,
F.
Buscemi
, and
M.-H.
Hsieh
,
J. Phys. A: Math. Theor.
45
,
453001
(
2012
); e-print arXiv:1206.4121 [quant-ph].
31.
C. A.
McCarthy
,
Isr. J. Math.
5
,
249
(
1967
).
32.
M. K.
Gupta
and
M. M.
Wilde
,
Commun. Math. Phys.
334
,
867
(
2015
); e-print arXiv:1310.7028 [quant-ph].
33.
N.
Datta
and
F.
Leditzky
,
J. Phys. A: Math. Theor.
47
,
045304
(
2014
); e-print arXiv:1308.5961 [quant-ph].
34.
M.
Berta
,
K. P.
Seshadreesan
, and
M. M.
Wilde
,
J. Math. Phys.
56
,
022205
(
2015
); e-print arXiv:1403.6102 [quant-ph].
35.
Z.
Luo
and
I.
Devetak
,
IEEE Trans. Inf. Theory
55
,
1331
(
2009
); e-print arXiv:quant-ph/0611008.
36.
J. T.
Yard
and
I.
Devetak
,
IEEE Trans. Inf. Theory
55
,
5339
(
2009
); e-print arXiv:0706.2907 [quant-ph].
37.
I.
Devetak
and
J.
Yard
,
Phys. Rev. Lett.
100
,
230501
(
2008
); e-print arXiv:quant-ph/0612050.
38.
M.
Tomamichel
,
R.
Colbeck
, and
R.
Renner
,
IEEE Trans. Inf. Theory
55
,
5840
(
2009
); e-print arXiv:0811.1221 [quant-ph].
39.
N.
Datta
,
IEEE Trans. Inf. Theory
55
,
2816
(
2009
); e-print arXiv:0803.2770 [quant-ph].
40.
M.
Tomamichel
,
R.
Colbeck
, and
R.
Renner
,
IEEE Trans. Inf. Theory
56
,
4674
(
2010
); e-print arXiv:0907.5238 [quant-ph].
41.
J.
Oppenheim
, preprint arXiv:0805.1065 [quant-ph] (
2008
).
42.
A.
Abeyesinghe
,
I.
Devetak
,
P.
Hayden
, and
A.
Winter
,
Proc. R. Soc. A
465
,
2537
(
2009
); e-print arXiv:quant-ph/0606225.
43.
N.
Datta
and
M.-H.
Hsieh
,
New J. Phys.
13
,
093042
(
2011
); e-print arXiv:1103.1135 [quant-ph].
44.
M.
Berta
,
M.
Christandl
, and
R.
Renner
,
Commun. Math. Phys.
306
,
579
(
2011
); e-print arXiv:0912.3805 [quant-ph].
46.
C. H.
Bennett
,
I.
Devetak
,
A. W.
Harrow
,
P. W.
Shor
, and
A.
Winter
,
IEEE Trans. Inf. Theory
60
,
2926
(
2014
); e-print arXiv:0912.5537 [quant-ph].
47.
A.
Winter
,
Commun. Math. Phys.
244
,
157
(
2004
); e-print arXiv:quant-ph/0109050.
48.
C. H.
Bennett
,
G.
Brassard
, and
J.-M.
Robert
,
SIAM J. Comput.
17
,
210
(
1988
).
49.
R.
Renner
and
R.
König
,
Theory of Cryptography
(
Springer
,
2005
); pp.
407
425
e-print arXiv:quant-ph/0403133.
50.
M.
Tomamichel
,
C.
Schaffner
,
A.
Smith
, and
R.
Renner
,
IEEE Trans. Inf. Theory
57
,
5524
(
2011
); e-print arXiv:1002.2436 [quant-ph].
51.
M.
Horodecki
,
P. W.
Shor
, and
M. B.
Ruskai
,
Rev. Math. Phys.
15
,
629
(
2003
); e-print arXiv:quant-ph/0302031.
52.
J. M.
Renes
,
Proc. R. Soc. A
467
,
1604
1623
(
2010
); e-print arXiv:1003.0703 [quant-ph].
53.
A.
Winter
, “
Coding theorems of quantum information theory
,” Ph.D. thesis,
Universität Bielefeld
,
1999
; e-print arXiv:quant-ph/9907077.
54.
I.
Devetak
and
A.
Winter
,
Phys. Rev. A
68
,
042301
(
2003
); e-print arXiv:quant-ph/0209029.
55.
J. M.
Renes
and
R.
Renner
,
IEEE Trans. Inf. Theory
58
,
1985
(
2012
); e-print arXiv:1008.0452 [quant-ph].
You do not currently have access to this content.