A hydraulic jump is a physical phenomenon commonly observed in nature such as in open channel flows or spillways and is dependent upon the relation between the initial upstream fluid speed and a critical speed characterized by a dimensionless number F known as the Froude number. In this paper we prove the existence of hydraulic jumps for stationary water-waves as a consequence of the existence of bifurcation branches of non-flat liquid interfaces originated from each of a sequence of upstream velocities F1 > F2 > ⋯ > Fr > ⋯ (Fr → 0 as r → ∞). We further establish explicitly, for F > 0, FFr, r ∈ ℕ, the existence and uniqueness of the solution of a perfect, incompressible, irrotational free surface flow over a flat bottom, under the influence of gravity; as well as the corresponding hydraulic jump.

1.
Borisovich
,
A.
and
Friedman
,
A.
, “
Symmetry-breaking bifurcations for free boundary problems
,”
Indiana Univ. Math. J.
54
(
3
),
927
947
(
2005
).
2.
Buffoni
,
B.
,
Dancer
,
E.
, and
Toland
,
J.
, “
The regularity and local bifurcation of steady periodic water waves
,”
Arch. Ration. Mech. Anal.
152
(
3
),
207
240
(
2000
).
3.
Craig
,
W.
, “
An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling limits
,”
Commun. Partial Differ. Equations
10
(
8
),
787
1003
(
1985
).
4.
Craig
,
W.
and
Nicholls
,
D. P.
, “
Traveling two and three dimensional capillary gravity water waves
,”
SIAM J. Math. Anal.
32
(
2
),
323
359
(
2000
).
5.
Crandall
,
M. G.
and
Rabinowitz
,
P. H.
, “
Bifurcation from simple eigenvalues
,”
J. Funct. Anal.
8
(
2
),
321
340
(
1971
).
6.
Fontelos
,
M. A.
and
Friedman
,
A.
, “
Symmetry-breaking bifurcations of free boundary problems in three dimensions
,”
Asymptotic Anal.
35
(
3
),
187
206
(
2003
).
7.
Fontelos
,
M. A.
and
Friedman
,
A.
, “
Symmetry-breaking bifurcations of charged drops
,”
Arch. Ration. Mech. Anal.
172
(
2
),
267
294
(
2004
).
8.
Friedman
,
A.
and
Reitich
,
F.
, “
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth
,”
Trans. Am. Math. Soc.
353
(
4
),
1587
1634
(
2001
).
9.
Groves
,
M.
,
Haragus
,
M.
, and
Sun
,
S.
, “
A dimension–breaking phenomenon in the theory of steady gravity–capillary water waves
,”
Philos. Trans. R. Soc., A
360
(
1799
),
2189
2243
(
2002
).
10.
Groves
,
M. D.
and
Wahlén
,
E.
, “
Spatial dynamics methods for solitary gravity-capillary water waves with an arbitrary distribution of vorticity
,”
SIAM J. Math. Anal.
39
(
3
),
932
964
(
2007
).
11.
Henry
,
D.
and
Matioc
,
A.-V.
, “
Global bifurcation of capillary–gravity-stratified water waves
,”
Proc. R. Soc. Edinburgh: Sect. A Math.
144
(
04
),
775
786
(
2014
).
12.
Johnson
,
R.
,
A Modern Introduction to the Mathematical Theory of Water Waves
(
Cambridge University Press
,
1997
), Vol.
19
.
13.
Jones
,
M.
and
Toland
,
J.
, “
Symmetry and the bifurcation of capillary-gravity waves
,” in
Analysis and Continuum Mechanics
(
Springer
,
1989
), pp.
357
381
.
14.
Lannes
,
D.
,
The Water Waves Problem: Mathematical Analysis and Asymptotics
(
American Mathematical Society
,
2013
), Vol.
188
.
15.
Levi-Civita
,
T.
, “
Determination rigoureuse des ondes permanentes d’ampleur finie
,”
Math. Ann.
93
(
1
),
264
314
(
1925
).
16.
Martin
,
C. I.
and
Matioc
,
B.-V.
, “
Existence of capillary-gravity water waves with piecewise constant vorticity
,”
J. Differ. Equations
256
(
8
),
3086
3114
(
2014
).
17.
Matioc
,
B.-V.
, “
Global bifurcation for water waves with capillary effects and constant vorticity
,”
Monatsh. Math.
174
(
3
),
459
475
(
2014
).
18.
Nalimov
,
V.
, “
The Cauchy-Poisson problem
,”
Dynamika Splosh. Sredy
18
,
104
210
(
1974
).
19.
Nicholls
,
D. P.
, “
Boundary perturbation methods for water waves
,”
GAMM-Mitt.
30
(
1
),
44
74
(
2007
).
20.
Nicholls
,
D. P.
and
Reitich
,
F.
, “
On analyticity of travelling water waves
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
2005
), Vol.
461
, pp.
1283
1309
.
21.
Reeder
,
J.
and
Shinbrot
,
M.
, “
The initial value problem for surface waves under gravity, II. the simplest 3-dimensional case
,”
Indiana Univ. Math. J.
25
(
11
),
1049
1071
(
1976
).
22.
Reeder
,
J.
and
Shinbrot
,
M.
, “
The initial value problem for surface waves under gravity III. Uniformly analytic initial domains
,”
J. Math. Anal. Appl.
67
(
2
),
340
391
(
1979
).
23.
Reeder
,
J.
and
Shinbrot
,
M.
, “
Three-dimensional, nonlinear wave interaction in water of constant depth
,”
Nonlinear Anal.: Theory, Methods Appl.
5
(
3
),
303
323
(
1981
).
24.
Struik
,
D. J.
, “
Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie
,”
Math. Ann.
95
(
1
),
595
634
(
1926
).
25.
Titri-Bouadjenak
,
C.
,
Hernane
,
D.
,
Ait-Yahia
,
R.
, and
Teniou
,
D.
, “
Existence and uniqueness of the solution of a supercritical free surface flow problem over an obstacle
,”
Rev. Mat. Complutense
23
(
2
),
515
527
(
2010
).
26.
Toland
,
J.
, “
On the existence of a wave of greatest height and Stokes’s conjecture
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
1978
), Vol.
363
, pp.
469
485
.
27.
Toland
,
J.
and
Jones
,
M.
, “
The bifurcation and secondary bifurcation of capillary-gravity waves
,” in
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
(
The Royal Society
,
1985
), Vol.
399
, pp.
391
417
.
28.
Yosihara
,
H.
, “
Capillary-gravity waves for an incompressible ideal fluid
,”
J. Math. Kyoto Univ.
23
(
4
),
649
694
(
1983
).
You do not currently have access to this content.