A hydraulic jump is a physical phenomenon commonly observed in nature such as in open channel flows or spillways and is dependent upon the relation between the initial upstream fluid speed and a critical speed characterized by a dimensionless number F known as the Froude number. In this paper we prove the existence of hydraulic jumps for stationary water-waves as a consequence of the existence of bifurcation branches of non-flat liquid interfaces originated from each of a sequence of upstream velocities F1 > F2 > ⋯ > Fr > ⋯ (Fr → 0 as r → ∞). We further establish explicitly, for F > 0, F≠Fr, r ∈ ℕ, the existence and uniqueness of the solution of a perfect, incompressible, irrotational free surface flow over a flat bottom, under the influence of gravity; as well as the corresponding hydraulic jump.
Skip Nav Destination
Article navigation
August 2016
Research Article|
August 30 2016
Stationary shapes for 2-d water-waves and hydraulic jumps
M. A. Fontelos;
M. A. Fontelos
a)
1
ICMAT-CSIC
, C/Nicolás Cabrera, No. 13-15 Campus de Cantoblanco, UAM, 28049 Madrid, Spain
Search for other works by this author on:
R. Lecaros;
R. Lecaros
b)
2Centro de Modelamiento Matemático (CMM),
Universidad de Chile (UMI CNRS 2807)
, Beauchef 851, Torre Norte, Piso 5, Casilla 170-3, Correo 3, Santiago, Chile
3Departamento de Matemática,
Universidad Técnica Federico Santa María
, Casilla 110-V, Valparaíso, Chile
Search for other works by this author on:
J. C. López-Ríos
;
J. C. López-Ríos
c)
4Departamento de Ingeniería Matemática,
Universidad de Chile
, Beauchef 851, Torre Norte, Piso 5, Santiago, Chile
Search for other works by this author on:
J. H. Ortega
J. H. Ortega
d)
2Centro de Modelamiento Matemático (CMM),
Universidad de Chile (UMI CNRS 2807)
, Beauchef 851, Torre Norte, Piso 5, Casilla 170-3, Correo 3, Santiago, Chile
4Departamento de Ingeniería Matemática,
Universidad de Chile
, Beauchef 851, Torre Norte, Piso 5, Santiago, Chile
Search for other works by this author on:
a)
Electronic mail: marco.fontelos@icmat.es
b)
Electronic mail: rlecaros@dim.uchile.cl
c)
Electronic mail: j.lopezr@dim.uchile.cl
d)
Electronic mail: jortega@dim.uchile.cl
J. Math. Phys. 57, 081520 (2016)
Article history
Received:
October 13 2015
Accepted:
August 10 2016
Citation
M. A. Fontelos, R. Lecaros, J. C. López-Ríos, J. H. Ortega; Stationary shapes for 2-d water-waves and hydraulic jumps. J. Math. Phys. 1 August 2016; 57 (8): 081520. https://doi.org/10.1063/1.4961514
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
Modified gravity: A unified approach to metric-affine models
Christian G. Böhmer, Erik Jensko
Almost synchronous quantum correlations
Thomas Vidick
Related Content
Explicit and exact solutions concerning the Antarctic Circumpolar Current with variable density in spherical coordinates
J. Math. Phys. (October 2019)
Liouville-type results for time-dependent stratified water flows over variable bottom in the β-plane approximation
Physics of Fluids (October 2023)
Mixing in anharmonic potential well
J. Math. Phys. (July 2022)
Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity
Physics of Fluids (October 2018)
An improved velocity increment model based on Kolmogorov equation of filtered velocity
Physics of Fluids (June 2009)