The modified Korteweg-de Vries hierarchy (mKdV) is derived by imposing isometry and isoenergy conditions on a moduli space of plane loops. The conditions are compared to the constraints that define Euler’s elastica. Moreover, the conditions are shown to be constraints on the curvature and other invariants of the loops which appear as coefficients of the generating function for the Faber polynomials.

1.
Anco
,
S. C.
and
Myrzakulov
,
R.
, “
Integrable generalizations of Schrödinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces
,”
J. Geom. Phys.
60
(
10
),
1576
-
1603
(
2010
).
2.
Bott
,
R.
and
Tu
,
L. W.
,
Differential Forms in Algebraic Topology
,
Graduate Texts in Mathematics
Vol.
82
(
Springer-Verlag
,
New York, Berlin
,
1982
).
3.
Brylinski
,
J.-L.
,
Loop Spaces, Characteristic Classes and Geometric Quantization
,
Progress in Mathematics
Vol.
107
(
Birkhäuser Boston, Inc.
,
Boston, MA
,
1993
).
4.
Ford
,
D. J.
,
McKay
,
J.
, and
Norton
,
S. P.
, “
More on replicable functions
,”
Commun. Algebra
22
,
5175
-
5193
(
1994
).
5.
Goldstein
,
R. E.
and
Petrich
,
D. M.
, “
The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane
,”
Phys. Rev. Lett.
67
,
3203
-
3206
(
1991
).
6.
Goldstein
,
R. E.
and
Petrich
,
D. M.
, “
Solitons, Euler’s equation, and the geometry of curve motion
,”
Singularities in Fluids, Plasmas and Optics, Heraklion, 1992
,
NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences
Vol.
404
(
Kluwer Academic Publishers
,
Dordrecht
,
1993
), pp.
93
-
109
.
7.
Levien
,
R.
, The elastica: A mathematical history, 2008, http://www.levien.com/phd/elastica_hist.pdf.
8.
Levien
,
R. L.
, “
From spiral to spline: Optimal techniques in interactive curve design
,” Ph.D. thesis,
Department of Engineering-Electrical Engineering and Computer Science
, U.C. Berkeley,
2009
, http://www.levien.com/phd/thesis.pdf.
9.
Matsutani
,
S.
, “
Statistical mechanics of elastica on a plane: Origin of mKdV hierarchy
,”
J. Phys. A
31
,
2705
-
2725
(
1998
).
10.
Matsutani
,
S.
, “
Hyperelliptic loop solitons with genus g: Investigations of a quantized elastica
,”
J. Geom. Phys.
43
,
146
-
162
(
2002
).
11.
Matsutani
,
S.
, “
On the moduli of a quantized elastica in ℙ and KdV flows: Study of hyperelliptic curves as an extension of Euler’s perspective of elastica I
,”
Rev. Math. Phys.
15
,
559
-
628
(
2003
).
12.
Matsutani
,
S.
, “
Relations in a quantized elastica
,”
J. Phys. A: Math. Theor.
41
,
075201
(
2008
).
13.
Matsutani
,
S.
, “
Euler’s elastica and beyond
,”
J. Geom. Symmetry Phys.
17
,
45
-
86
(
2010
).
14.
Matsutani
,
S.
and
Previato
,
E.
, “
Algebraic and analytic identities for the Faber polynomials
,” preprint (2016).
15.
Miura
,
R. M.
, “
Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation
,”
J. Math. Phys.
9
,
1202
-
1204
(
1968
).
16.
Saitô
,
N.
,
Takaiashi
,
K.
, and
Yunoki
,
Y.
, “
The statistical mechanics theory of stiff chains
,”
J. Phys. Soc. Jpn.
22
(
1
),
219
-
226
(
1967
).
17.
Tjurin
,
A. N.
, “
Periods of quadratic differentials
,”
Usp. Mat. Nauk
33
(
6
),
149
-
195
(
1978
).
18.
Truesdell
,
C.
, “
The influence of elasticity on analysis: The classic heritage
,”
Bull. Am. Math. Soc.
9
,
293
-
310
(
1983
).
You do not currently have access to this content.