We establish the optimal Lp − L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp − L2 estimates for the linearized equations, and delicate energy estimates.
REFERENCES
1.
Brennen
, C. E.
, Fundamentals of Multiphase Flow
(Cambridge University Press
, New York
, 2005
).2.
Danchin
, R.
, “Global existence in critical spaces for compressible Navier-Stokes equations
,” Invent. Math.
141
, 579
-614
(2000
).3.
Danchin
, R.
, “Global existence in critical spaces for flows of compressible viscous and heat-conductive gases
,” Arch. Ration. Mech. Anal.
16
, 1
-39
(2001
).4.
Danchin
, R.
, “A global existence result for the compressible Navier-Stokes equations in the critical Lp framework
,” Arch. Ration. Mech. Anal.
198
, 233
-271
(2010
).5.
Deckelnick
, K.
, “L2-Decay for the compressible Navier-Stokes equations in unbounded domains
,” Commun. Partial Differ. Equations
18
, 1445
-1476
(1993
).6.
Duan
, R. J.
and Ma
, H. F.
, “Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity
,” Indiana Univ. Math. J.
5
, 2299
-2319
(2008
).7.
Duan
, R. J.
, Ukai
, S.
, Yang
, T.
, and Zhao
, H. J.
, “Optimal Lp-Lq convergence rate for the compressible Navier-Stokes equations with potential force
,” J. Differ. Equations
238
, 220
-223
(2007
).8.
Duan
, R. J.
, Ukai
, S.
, Yang
, T.
, and Zhao
, H. J.
, “Optimal convergence rate for compressible Navier-Stokes equations with potential force
,” Math. Models Methods Appl. Sci.
17
, 737
-758
(2007
).9.
Evje
, S.
, “Global weak solutions for a compressible gas-liquid model with well-formation interaction
,” J. Differ. Equations
251
, 2352
-2386
(2011
).10.
Evje
, S.
, “Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells
,” SIAM J. Appl. Math.
43
, 1887
-1922
(2011
).11.
Evje
, S.
and Flåtten
, T.
, “Hybrid flux-splitting schemes for a common two-fluid model
,” J. Comput. Phys.
192
, 175
-210
(2003
).12.
Evje
, S.
and Flåtten
, T.
, “On the wave structure of two-phase flow models
,” SIAM J. Appl. Math.
67
, 487
-511
(2006
).13.
Evje
, S.
, Flåtten
, T.
, and Friis
, H. A.
, “Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum
,” Nonlinear Anal.
70
, 3864
-3886
(2009
).14.
Evje
, S.
and Karlsen
, K. H.
, “Global existence of weak solutions for a viscous two-phase model
,” J. Differ. Equations
245
, 2660
-2703
(2008
).15.
Evje
, S.
and Karlsen
, K. H.
, “Global weak solutions for a viscous liquid-gas model with singular pressure law
,” Commun. Pure Appl. Anal.
8
, 1867
-1894
(2009
).16.
Fan
, L.
, Liu
, Q. Q.
, and Zhu
, C. J.
, “Convergence rates to stationary solutions of a gas-liquid model with external forces
,” Nonlinearity
27
, 2875
-2901
(2012
).17.
Friis
, H. A.
, Evje
, S.
, and Flåtten
, T.
, “A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model
,” Adv. Appl. Math. Mech.
1
, 166
-200
(2009
).18.
Guo
, Y.
and Wang
, Y. J.
, “Decay of dissipative equations and negative Sobolev spaces
,” Commun. Partial Differ. Equations
37
, 2165
-2208
(2012
).19.
Guo
, Z. H.
, Yang
, J.
, and Yao
, L.
, “Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum
,” J. Math. Phys.
52
, 093102
(2011
).20.
Hao
, C. C.
and Li
, H. L.
, “Well-posedness for a multidimensional viscous liquid-gas two-phase flow model
,” SIAM J. Math. Anal.
44
(3
), 1304
-1332
(2012
).21.
Hoff
, D.
, “Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves
,” Z. Angew. Math. Phys.
48
, 597
-614
(1997
).22.
Hoff
, D.
and Zumbrun
, K.
, “Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
,” Indiana Univ. Math. J.
44
, 603
-676
(1995
).23.
Hou
, X. F.
and Wen
, H. Y.
, “A blow-up criterion of strong solutions to a viscous liquid-gas two-phase flow model with vacuum in 3D
,” Nonlinear Anal.
75
, 5229
-5237
(2012
).24.
25.
Ju
, N.
, “Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space
,” Commun. Math. Phys.
251
, 365
-376
(2004
).26.
Kawashima
, S.
and Okada
, M.
, Smooth Global Solutions for the One-dimensional Equations in Magnetohydrodynamics
(Kyoto University
, 1983
).27.
Kobayashi
, T.
, “Some estimates of solutions for the equations of compressible viscous fluid in an exterior domain in ℝ3
,” J. Differ. Equations
184
, 587
-619
(2002
).28.
Kobayashi
, T.
and Shibata
, Y.
, “Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3
,” Commun. Math. Phys.
200
, 621
-659
(1999
).29.
Li
, H. L.
and Zhang
, T.
, “Large time behavior of isentropic compressible Navier-Stokes system in ℝ3
,” Math. Methods Appl. Sci.
34
(6
), 670
-682
(2011
).30.
Liu
, T. P.
and Wang
, W. K.
, “The pointwise estiamtes of diffusion waves for Navier-Stokes equations in odd multi-dimensions
,” Commun. Math. Phys.
196
, 145
-173
(1998
).31.
Liu
, T. P.
and Zeng
, Y.
, “Compressible Navier-Stokes equations with zero heat conductivity
,” J. Differ. Equations
153
, 225
-291
(1999
).32.
Liu
, Q. Q.
and Zhu
, C. J.
, “Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum
,” J. Differ. Equations
252
, 2492
-2519
(2012
).33.
Matsumura
, A.
and Nishida
, T.
, “The initial value problems for the equations of motion of compressible viscous and heat-conductive fluids
,” Proc. Jpn. Acad., Ser. A
55
, 337
-342
(1979
).34.
Matsumura
, A.
and Nishida
, T.
, “The initial value problems for the equations of motion of viscous and heat-conductive gases
,” J. Math. Kyoto Univ.
20
, 67
-104
(1980
).35.
Matsumura
, A.
and Nishida
, T.
, “Initial boundary value problem for equations of motion of compressible viscous and heat conductive fluids
,” Commun. Math. Phys.
89
, 445
-464
(1983
).36.
Nirenberg
, L.
, “On elliptic partial differential equations
,” Annu. Sc. Norm. Super. Pisa
13
, 115
-162
(1959
).37.
Pan
, R. H.
and Zhao
, K.
, “The 3D compressible Euler equations with damping in a bounded domain
,” J. Differ. Equations
246
, 581
-596
(2009
).38.
Sideris
, T. C.
, Thomases
, B.
, and Wang
, D. H.
, “Long time behavior of solutions to the 3D compressible Euler equations with damping
,” Commun. Partial Differ. Equations
28
, 795
-816
(2003
).39.
Tan
, Z.
and Wang
, Y.
, “Global solution and large-time behavior of the 3D compressible Euler equations with damping
,” J. Differ. Equations
254
, 1686
-1704
(2013
).40.
Tan
, Z.
and Wu
, G. C.
, “Large time behavior of solutions for compressible Euler equations with damping in ℝ3
,” J. Differ. Equations
252
, 1546
-1561
(2012
).41.
Wang
, Y. J.
, “Decay of the Navier-Stokes-Poisson equations
,” J. Differ. Equations
253
, 273
-297
(2012
).42.
Wang
, W. K.
and Yang
, T.
, “The pointwise estimates of solutions for Euler-equations with damping in multi-dimensions
,” J. Differ. Equations
173
, 410
-450
(2001
).43.
Wen
, H. Y.
, Yao
, L.
, and Zhu
, C. J.
, “A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow modle with vacuum
,” J. Math. Pures Appl.
97
, 204
-229
(2012
).44.
Yao
, L.
, Yang
, J.
, and Guo
, Z. H.
, “Blow-up criterion for 3D viscous liquid-gas two-phase flow model
,” J. Math. Anal. Appl.
395
, 175
-190
(2012
).45.
Yao
, L.
, Zhang
, T.
, and Zhu
, C. J.
, “Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model
,” SIAM J. Math. Anal.
42
, 1874
-1897
(2010
).46.
Yao
, L.
, Zhang
, T.
, and Zhu
, C. J.
, “A blow-up criterion for a 2D viscous liquid-gas two-phase flow model
,” J. Differ. Equations
250
, 3362
-3378
(2011
).47.
Yao
, L.
and Zhu
, C. J.
, “Free boundary value problem for a viscous two-phase model with mass-dependent viscosity
,” J. Differ. Equations
247
, 2705
-2739
(2009
).48.
Yao
, L.
and Zhu
, C. J.
, “Existence and uniqueness of global weak solution to a two-phase flow model with vacuum
,” Math. Ann.
349
, 903
-928
(2011
).49.
Yao
, L.
, Zhu
, C. J.
, and Zi
, R. Z.
, “Incompressible limit of viscous liquid-gas two-phase flow model
,” SIAM J. Math. Anal.
44
, 3324
-3345
(2012
).50.
Zhang
, T.
, “Global solution of compressible Navier-Stokes equation with a density-dependent viscosity coefficient
,” J. Math. Phys.
52
, 043510
(2011
).51.
Zhang
, Y. H.
and Zhu
, C. J.
, “Global existence and optimal convergence rates for the strong solutions in H2 to the 3D viscous liquid-gas two-phase flow model
,” J. Differ. Equations
258
, 2315
-2338
(2015
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.