We establish the optimal LpL2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, LpL2 estimates for the linearized equations, and delicate energy estimates.

1.
Brennen
,
C. E.
,
Fundamentals of Multiphase Flow
(
Cambridge University Press
,
New York
,
2005
).
2.
Danchin
,
R.
, “
Global existence in critical spaces for compressible Navier-Stokes equations
,”
Invent. Math.
141
,
579
-
614
(
2000
).
3.
Danchin
,
R.
, “
Global existence in critical spaces for flows of compressible viscous and heat-conductive gases
,”
Arch. Ration. Mech. Anal.
16
,
1
-
39
(
2001
).
4.
Danchin
,
R.
, “
A global existence result for the compressible Navier-Stokes equations in the critical Lp framework
,”
Arch. Ration. Mech. Anal.
198
,
233
-
271
(
2010
).
5.
Deckelnick
,
K.
, “
L2-Decay for the compressible Navier-Stokes equations in unbounded domains
,”
Commun. Partial Differ. Equations
18
,
1445
-
1476
(
1993
).
6.
Duan
,
R. J.
and
Ma
,
H. F.
, “
Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity
,”
Indiana Univ. Math. J.
5
,
2299
-
2319
(
2008
).
7.
Duan
,
R. J.
,
Ukai
,
S.
,
Yang
,
T.
, and
Zhao
,
H. J.
, “
Optimal Lp-Lq convergence rate for the compressible Navier-Stokes equations with potential force
,”
J. Differ. Equations
238
,
220
-
223
(
2007
).
8.
Duan
,
R. J.
,
Ukai
,
S.
,
Yang
,
T.
, and
Zhao
,
H. J.
, “
Optimal convergence rate for compressible Navier-Stokes equations with potential force
,”
Math. Models Methods Appl. Sci.
17
,
737
-
758
(
2007
).
9.
Evje
,
S.
, “
Global weak solutions for a compressible gas-liquid model with well-formation interaction
,”
J. Differ. Equations
251
,
2352
-
2386
(
2011
).
10.
Evje
,
S.
, “
Weak solutions for a gas-liquid model relevant for describing gas-kick in oil wells
,”
SIAM J. Appl. Math.
43
,
1887
-
1922
(
2011
).
11.
Evje
,
S.
and
Flåtten
,
T.
, “
Hybrid flux-splitting schemes for a common two-fluid model
,”
J. Comput. Phys.
192
,
175
-
210
(
2003
).
12.
Evje
,
S.
and
Flåtten
,
T.
, “
On the wave structure of two-phase flow models
,”
SIAM J. Appl. Math.
67
,
487
-
511
(
2006
).
13.
Evje
,
S.
,
Flåtten
,
T.
, and
Friis
,
H. A.
, “
Global weak solutions for a viscous liquid-gas model with transition to single-phase gas flow and vacuum
,”
Nonlinear Anal.
70
,
3864
-
3886
(
2009
).
14.
Evje
,
S.
and
Karlsen
,
K. H.
, “
Global existence of weak solutions for a viscous two-phase model
,”
J. Differ. Equations
245
,
2660
-
2703
(
2008
).
15.
Evje
,
S.
and
Karlsen
,
K. H.
, “
Global weak solutions for a viscous liquid-gas model with singular pressure law
,”
Commun. Pure Appl. Anal.
8
,
1867
-
1894
(
2009
).
16.
Fan
,
L.
,
Liu
,
Q. Q.
, and
Zhu
,
C. J.
, “
Convergence rates to stationary solutions of a gas-liquid model with external forces
,”
Nonlinearity
27
,
2875
-
2901
(
2012
).
17.
Friis
,
H. A.
,
Evje
,
S.
, and
Flåtten
,
T.
, “
A numerical study of characteristic slow-transient behavior of a compressible 2D gas-liquid two-fluid model
,”
Adv. Appl. Math. Mech.
1
,
166
-
200
(
2009
).
18.
Guo
,
Y.
and
Wang
,
Y. J.
, “
Decay of dissipative equations and negative Sobolev spaces
,”
Commun. Partial Differ. Equations
37
,
2165
-
2208
(
2012
).
19.
Guo
,
Z. H.
,
Yang
,
J.
, and
Yao
,
L.
, “
Global strong solution for a three-dimensional viscous liquid-gas two-phase flow model with vacuum
,”
J. Math. Phys.
52
,
093102
(
2011
).
20.
Hao
,
C. C.
and
Li
,
H. L.
, “
Well-posedness for a multidimensional viscous liquid-gas two-phase flow model
,”
SIAM J. Math. Anal.
44
(
3
),
1304
-
1332
(
2012
).
21.
Hoff
,
D.
, “
Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves
,”
Z. Angew. Math. Phys.
48
,
597
-
614
(
1997
).
22.
Hoff
,
D.
and
Zumbrun
,
K.
, “
Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
,”
Indiana Univ. Math. J.
44
,
603
-
676
(
1995
).
23.
Hou
,
X. F.
and
Wen
,
H. Y.
, “
A blow-up criterion of strong solutions to a viscous liquid-gas two-phase flow model with vacuum in 3D
,”
Nonlinear Anal.
75
,
5229
-
5237
(
2012
).
24.
Ishii
,
M.
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
(
Eyrolles
,
Paris
,
1975
).
25.
Ju
,
N.
, “
Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space
,”
Commun. Math. Phys.
251
,
365
-
376
(
2004
).
26.
Kawashima
,
S.
and
Okada
,
M.
,
Smooth Global Solutions for the One-dimensional Equations in Magnetohydrodynamics
(
Kyoto University
,
1983
).
27.
Kobayashi
,
T.
, “
Some estimates of solutions for the equations of compressible viscous fluid in an exterior domain in ℝ3
,”
J. Differ. Equations
184
,
587
-
619
(
2002
).
28.
Kobayashi
,
T.
and
Shibata
,
Y.
, “
Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3
,”
Commun. Math. Phys.
200
,
621
-
659
(
1999
).
29.
Li
,
H. L.
and
Zhang
,
T.
, “
Large time behavior of isentropic compressible Navier-Stokes system in ℝ3
,”
Math. Methods Appl. Sci.
34
(
6
),
670
-
682
(
2011
).
30.
Liu
,
T. P.
and
Wang
,
W. K.
, “
The pointwise estiamtes of diffusion waves for Navier-Stokes equations in odd multi-dimensions
,”
Commun. Math. Phys.
196
,
145
-
173
(
1998
).
31.
Liu
,
T. P.
and
Zeng
,
Y.
, “
Compressible Navier-Stokes equations with zero heat conductivity
,”
J. Differ. Equations
153
,
225
-
291
(
1999
).
32.
Liu
,
Q. Q.
and
Zhu
,
C. J.
, “
Asymptotic behavior of a viscous liquid-gas model with mass-dependent viscosity and vacuum
,”
J. Differ. Equations
252
,
2492
-
2519
(
2012
).
33.
Matsumura
,
A.
and
Nishida
,
T.
, “
The initial value problems for the equations of motion of compressible viscous and heat-conductive fluids
,”
Proc. Jpn. Acad., Ser. A
55
,
337
-
342
(
1979
).
34.
Matsumura
,
A.
and
Nishida
,
T.
, “
The initial value problems for the equations of motion of viscous and heat-conductive gases
,”
J. Math. Kyoto Univ.
20
,
67
-
104
(
1980
).
35.
Matsumura
,
A.
and
Nishida
,
T.
, “
Initial boundary value problem for equations of motion of compressible viscous and heat conductive fluids
,”
Commun. Math. Phys.
89
,
445
-
464
(
1983
).
36.
Nirenberg
,
L.
, “
On elliptic partial differential equations
,”
Annu. Sc. Norm. Super. Pisa
13
,
115
-
162
(
1959
).
37.
Pan
,
R. H.
and
Zhao
,
K.
, “
The 3D compressible Euler equations with damping in a bounded domain
,”
J. Differ. Equations
246
,
581
-
596
(
2009
).
38.
Sideris
,
T. C.
,
Thomases
,
B.
, and
Wang
,
D. H.
, “
Long time behavior of solutions to the 3D compressible Euler equations with damping
,”
Commun. Partial Differ. Equations
28
,
795
-
816
(
2003
).
39.
Tan
,
Z.
and
Wang
,
Y.
, “
Global solution and large-time behavior of the 3D compressible Euler equations with damping
,”
J. Differ. Equations
254
,
1686
-
1704
(
2013
).
40.
Tan
,
Z.
and
Wu
,
G. C.
, “
Large time behavior of solutions for compressible Euler equations with damping in ℝ3
,”
J. Differ. Equations
252
,
1546
-
1561
(
2012
).
41.
Wang
,
Y. J.
, “
Decay of the Navier-Stokes-Poisson equations
,”
J. Differ. Equations
253
,
273
-
297
(
2012
).
42.
Wang
,
W. K.
and
Yang
,
T.
, “
The pointwise estimates of solutions for Euler-equations with damping in multi-dimensions
,”
J. Differ. Equations
173
,
410
-
450
(
2001
).
43.
Wen
,
H. Y.
,
Yao
,
L.
, and
Zhu
,
C. J.
, “
A blow-up criterion of strong solution to a 3D viscous liquid-gas two-phase flow modle with vacuum
,”
J. Math. Pures Appl.
97
,
204
-
229
(
2012
).
44.
Yao
,
L.
,
Yang
,
J.
, and
Guo
,
Z. H.
, “
Blow-up criterion for 3D viscous liquid-gas two-phase flow model
,”
J. Math. Anal. Appl.
395
,
175
-
190
(
2012
).
45.
Yao
,
L.
,
Zhang
,
T.
, and
Zhu
,
C. J.
, “
Existence and asymptotic behavior of global weak solutions to a 2D viscous liquid-gas two-phase flow model
,”
SIAM J. Math. Anal.
42
,
1874
-
1897
(
2010
).
46.
Yao
,
L.
,
Zhang
,
T.
, and
Zhu
,
C. J.
, “
A blow-up criterion for a 2D viscous liquid-gas two-phase flow model
,”
J. Differ. Equations
250
,
3362
-
3378
(
2011
).
47.
Yao
,
L.
and
Zhu
,
C. J.
, “
Free boundary value problem for a viscous two-phase model with mass-dependent viscosity
,”
J. Differ. Equations
247
,
2705
-
2739
(
2009
).
48.
Yao
,
L.
and
Zhu
,
C. J.
, “
Existence and uniqueness of global weak solution to a two-phase flow model with vacuum
,”
Math. Ann.
349
,
903
-
928
(
2011
).
49.
Yao
,
L.
,
Zhu
,
C. J.
, and
Zi
,
R. Z.
, “
Incompressible limit of viscous liquid-gas two-phase flow model
,”
SIAM J. Math. Anal.
44
,
3324
-
3345
(
2012
).
50.
Zhang
,
T.
, “
Global solution of compressible Navier-Stokes equation with a density-dependent viscosity coefficient
,”
J. Math. Phys.
52
,
043510
(
2011
).
51.
Zhang
,
Y. H.
and
Zhu
,
C. J.
, “
Global existence and optimal convergence rates for the strong solutions in H2 to the 3D viscous liquid-gas two-phase flow model
,”
J. Differ. Equations
258
,
2315
-
2338
(
2015
).
You do not currently have access to this content.