In this paper, we study the existence of positive solution for the following class of fractional elliptic equation ϵ 2 s ( Δ ) s u + V ( z ) u = λ u q 2 u + u 2 s 2 u in R N , where ϵ, λ > 0 are positive parameters, q ( 2 , 2 s ) , 2 s = 2 N N 2 s , N > 2 s , s ( 0 , 1 ) , ( Δ ) s u is the fractional Laplacian, and V is a saddle-like potential. The result is proved by using minimizing method constrained to the Nehari manifold. A special minimax level is obtained by using an argument made by Benci and Cerami.

1.
Alves
,
C. O.
, “
Existence of positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity with exponential critical growth in ℝ2
,”
Milan J. Math.
84
,
1
22
(
2016
).
2.
Alves
,
C. O.
,
Carrião
,
P. C.
, and
Miyagaki
,
O. H.
, “
Nonlinear perturbations of a periodic elliptic problem with critical growth
,”
J. Math. Anal. Appl.
260
,
133
-
146
(
2001
).
3.
Alves
,
C. O.
,
do Ó
,
J. M. B.
, and
Souto
,
M. A. S.
, “
Local mountain-pass for a class of elliptic problems involving critical growth.
,”
Nonlinear Anal.
46
,
495
-
510
(
2001
).
4.
Alves
,
C. O.
and
Figueiredo
,
G. M.
, “
Multiplicity of positive solutions for a class of quasilinear problems in ℝN via penalization method
,”
Adv. Nonlinear Stud.
5
,
551
-
572
(
2005
).
5.
Alves
,
C. O.
and
Souto
,
M. A. S.
, “
On existence and concentration behavior of ground state solutions for a class of problems with critical growth
,”
Commun. Pure Appl. Anal.
1
,
417
-
431
(
2002
).
6.
Bartsch
,
T.
,
Pankov
,
A.
, and
Wang
,
Z.-Q.
, “
Nonlinear Schrödinger equations with steep potential well
,”
Commun. Contemp. Math.
3
,
1
-
21
(
2001
).
7.
Bartsch
,
T.
and
Wang
,
Z.-Q.
, “
Existence and multiplicity results for some superlinear elliptic problems on ℝN
,”
Commun. Partial Differ. Equations
20
,
1725
-
1741
(
1995
).
8.
Benci
,
V.
and
Cerami
,
G.
, “
Existence of positive solutions of the equation Δ u + a ( x ) u = u N + 2 N 2 in ℝN
,”
J. Funct. Anal.
88
,
90
-
117
(
1990
).
9.
Brändle
,
C.
,
Colorado
,
E.
, and
Sánchez
,
U.
, “
A concave-convex elliptic problem involving the fractional Laplacian
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
143
,
39
71
(
2013
).
10.
Cabré
,
X.
and
Sire
,
Y.
, “
Nonlinear equations for fractional Laplacians. I. Regularity, maximum principles, and Hamiltonian estimates
,”
Ann. Inst. H. Poincaré Nonlinéare Anal.
31
,
23
-
53
(
2014
).
11.
Caffarelli
,
L.
and
Silvestre
,
L.
, “
An extension problems related to the fractional Laplacian
,”
Commun. Partial Differ. Equations
32
,
1245
1260
(
2007
).
12.
Chang
,
X.
and
Wang
,
Z. Q.
, “
Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian
,”
J. Differ. Equations
256
,
2965
-
2992
(
2014
).
13.
Chen
,
G.
and
Zheng
,
Y.
, “
Concentration phenomena for fractional noninear Schrödinger equations
,”
Commun. Pure Appl. Anal.
13
,
2359
2376
(
2014
).
14.
Cotsiolis
,
A.
and
Tavoularis
,
N.
, “
Best constants for Sobolev inequalities for higher order fractional derivatives
,”
J. Math. Anal. Appl.
295
,
225
-
236
(
2004
).
15.
Dávila
,
J.
,
del Pino
,
M.
, and
Wei
,
J. C.
, “
Concentrating standing waves for the fractional nonlinear Schrödinger equation
,”
J. Differ. Equations
256
,
858
892
(
2014
).
16.
del Pino
,
M.
and
Felmer
,
P. L.
, “
Local mountain pass for semilinear elliptic problems in unbounded domains
,”
Calculus Var. Partial Differ. Equations
4
,
121
-
137
(
1996
).
17.
del Pino
,
M.
,
Felmer
,
P. L.
, and
Miyagaki
,
O. H.
, “
Existence of positive bound states of nonlinear Schrodinger equations with saddle-like potential
,”
Nonlinear Anal.
34
,
979
-
989
(
1998
).
18.
Di Nezza
,
E.
,
Palatucci
,
G.
, and
Valdinoci
,
E.
, “
Hitchhiker’s guide to the fractional Sobolev spaces
,”
Bull. Sci. Math.
136
,
521
573
(
2012
).
19.
Dipierro
,
S.
,
Palatucci
,
G.
, and
Valdinoci
,
E.
, “
Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian
,”
Matematiche
68
(
1
),
201
216
(
2013
).
20.
do Ó
,
J. M. B.
and
Souto
,
M. A. S.
, “
On a class of nonlinear Schodinger equations in ℝ2 involving critical growth
,”
J. Differ. Equations
174
,
289
-
311
(
2001
).
21.
Fall
,
M. M.
,
Mahmoudi
,
F.
, and
Valdinoci
,
E.
, “
Ground states and concentration phenomena for the fractional Schrödinger equation
,”
Nonlinearity
28
(
2015
).
22.
Felmer
,
P.
,
Quass
,
A.
, and
Tan
,
J.
, “
Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian
,”
Proc. - R. Soc. Edinburgh, Sect. A: Math.
142
,
1237
1262
(
2012
).
23.
Floer
,
A.
and
Weinstein
,
A.
, “
Nonspreading wave packets for the cubic Schrödinger equations with bounded potential
,”
J. Funct. Anal.
69
,
397
408
(
1986
).
24.
Frank
,
R. L.
,
Lenzmann
,
E.
, and
Silvestre
,
L.
, “
Uniqueness of radial solutions for the fractional laplacian
,”
Comm. Pure Appl. Math
69
,
1671
1726
(
2016
).
25.
Oh
,
Y. J.
, “
Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials on the class (V)a
,”
Commun. Partial Differ. Equations
13
,
1499
-
1519
(
1988
).
26.
Park
,
Y. J.
, “
Fractional Polya-Szegö inequality
,”
J. Chungcheong Math. Soc.
24
,
267
271
(
2011
).
27.
Rabinowitz
,
P. H.
, “
On a class of nonlinear Schrödinger equations
,”
Z. Angew Math. Phys.
43
,
270
-
291
(
1992
).
28.
Secchi
,
S.
, “
Ground state solutions for nonlinear fractional Schrödinger equations in ℝN
,”
J. Math. Phys.
54
,
031501
(
2013
).
29.
Shang
,
X.
and
Zhang
,
J.
, “
Concentrating solutions of nonlinear fractional Schrödinger equation with potentials
,”
J. Differ. Equations
258
,
1106
1128
(
2015
).
30.
Shang
,
X.
,
Zhang
,
J.
, and
Yang
,
Y.
, “
On fractional Schödinger equation in ℝN with critical growth
,”
J. Math. Phys.
54
, 121502-19 (
2013
).
31.
Wang
,
X.
, “
On concentration of positive bound states of nonlinear Schrödinger equations
,”
Commun. Math. Phys.
53
,
229
-
244
(
1993
).
32.
Willem
,
W.
,
Minimax Theorems
(
Birkhauser
,
1986
).
33.
Zhang
,
J.
,
Liu
,
X.
, and
Jiao
,
H.
, “
Multiplicity of positive solutions for a fractional Laplacian equations involving critical nonlinearity
,” e-print arXiv:1502.02222 [math.AP].
You do not currently have access to this content.