Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades. There exist very few results for steady-state fluctuation theorem of sample entropy production rate in terms of large deviation principle for diffusion processes due to the technical difficulties. Here we give a proof for the steady-state fluctuation theorem of a diffusion process in magnetic fields, with explicit expressions of the free energy function and rate function. The proof is based on the Karhunen-Loève expansion of complex-valued Ornstein-Uhlenbeck process.

1.
Apostol
,
T
,
Mathematical Analysis
(
Addison-Wesley
,
1974
).
2.
Ash
,
R. B.
and
Gardner
,
M. F.
,
Topics in Stochastic Processes
(
Academic Press
,
New York
,
1975
).
3.
Balescu
,
R.
,
Statistical Dynamics: Matter Out of Equilibrium
(
Imperial College Press
,
London
,
1997
).
4.
Bertini
,
L.
and
Di Gesù
,
G.
, “
Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes
,”
ALEA, Lat. Am. J. Probab. Math. Stat.
12
,
743
763
(
2015
).
5.
Bridgman
,
P.
, “
The second law of thermodynamics and irreversible processes
,”
Phys. Rev.
58
,
845
(
1940
).
6.
Chen
,
Y.
and
Liu
,
Y.
, “
On the eigenfunctions of the complex Ornstein-Uhlenbeck operators
,”
Kyoto J. Math.
54
(
3
),
577
596
(
2014
).
7.
Dembo
,
A.
and
Zeitouni
,
O.
,
Large Deviations Techniques And Applications
(
Springer-Verlag
,
New York
,
2000
).
8.
Deheuvels
,
P.
, “
Karhunen-Loeve expansions of mean-centered Wiener processes
,” in
High Dimensional Probability
,
IMS Lecture Notes-Monograph Series
Vol.
51
(
Inst. Math. Statist.
,
Beachwood, OH
,
2006
), pp.
62
76
.
9.
Deheuvels
,
P.
, “
Karhunen-Loeve expansion for a mean-centered Brownian bridge
,”
Statist. Probab. Lett.
77
,
1190
1200
(
2007
).
10.
Deheuvels
,
P.
and
Martynov
,
G.
, “
Karhunen-Loeve expansions for weighted Wiener processes and Brownian bridges via Bessel functions
,” in
Progress in Probability
(
Birkhauser
,
Basel
,
2003
), Vol.
55
, pp.
57
93
.
11.
Eckart
,
C.
, “
The thermodynamics of irreversible processes. I. The simple fluid
,”
Phys. Rev.
58
,
267
(
1940
).
12.
Eckart
,
C.
, “
The thermodynamics of irreversible processes. II. Fluid mixtures
,”
Phys. Rev.
58
,
269
(
1940
).
13.
Evans
,
D. J.
,
Cohen
,
E. G. D.
, and
Morriss
,
G. P.
, “
Probability of second law violation in steady flows
,”
Phys. Rev. Lett.
71
,
2401
2404
(
1993
).
14.
Friz
,
P. K.
,
Gassiat
,
P.
, and
Lyons
,
T.
, “
Physical Brownian motion in a magnetic field as a rough path
,”
Trans. Am. Math. Soc.
367
,
7939
7955
(
2015
).
15.
Friz
,
P. K.
and
Hairer
,
M.
,
A Course on Rough Paths, With an Introduction to Regularity Structures
(
Springer
,
2014
).
16.
Gallavotti
,
G.
and
Cohen
,
E. G. D.
, “
Dynamical ensembles in stationary states
,”
J. Stat. Phys.
80
,
931
970
(
1995
).
17.
Ge
,
H.
,
Qian
,
M.
, and
Qian
,
H.
, “
Stochastic theory of nonequilibrium steady states (Part II): Applications in chemical biophysics
,”
Phys. Rep.
510
,
87
118
(
2012
).
18.
Hill
,
T. L.
,
Free Energy Transduction in Biology
(
Academic Press
,
New York
,
1977
).
19.
Hill
,
T. L.
,
Free Energy Transduction and Biochemical Cycle Kinetics
(
Springer-Verlag
,
New York
,
1995
).
20.
Itô
,
K.
, “
Complex multiple Wiener integral
,”
Jpn. J. Math.
22
,
63
86
(
1953
), reprinted in,Kiyosi Itô Selected Papers edited by Daniel W. Stroock and S. R. S. Varadhan (Springer-Verlag, 1987).
21.
Jaksic
,
V.
,
Nersesyan
,
V.
,
Pillet
,
C.-A.
, and
Shirikyan
,
A.
, “
Large deviations from a stationary measure for a class of dissipative PDE’s with random kicks
,”
Commun. Pure Appl. Math.
68
(
12
),
2108
2143
(
2015
).
22.
Jiang
,
D. Q.
,
Qian
,
M.
, and
Qian
,
M. P.
, “
Mathematical theory of nonequilibrium steady states—On the frontier of probability and dynamical systems
,” in
Lecture Notes in Mathematics
(
Springer-Verlag
,
Berlin
,
2004
), Vol.
1833
.
23.
Jiang
,
D.-Q.
,
Qian
,
M.
, and
Zhang
,
F.-X.
, “
Entropy production fluctuations of finite Markov chains
,”
J. Math. Phys.
44
(
9
),
4176
(
2003
).
24.
Kac
,
M.
, “
Random walk in the presence of absorbing barriers
,”
Ann. Math. Stat.
16
,
62
67
(
1945
).
25.
Kac
,
M.
and
Siegert
,
A. J. F.
, “
An explicit representation of a stationary Gaussian process
,”
Ann. Math. Stat.
18
,
438
442
(
1947
).
26.
Kifer
,
Y.
, “
Large deviations in dynamical systems and stochastic processes
,”
Trans. Am. Math. Soc.
321
(
2
),
505
524
(
1990
).
27.
Kim
,
W. H.
, “
On the behavior of the EPR of a diffusion process in nonequilibrium steady state
,” Ph.D. thesis,
University of Washington
, Seattle,
2011
.
28.
Kolmogorov
,
A. N.
, “
Zur theorie der Markoffschen ketten
,”
Math. Ann.
112
,
155
160
(
1936
);
[
Kolmogorov
,
A. N.
,
K Teorii Tsepei Markova, Collection of Articles on Probability Theory and Mathematical Statistics
(
Nauka, Moscow
,
1986
), pp.
173
178
].
29.
Kolmogorov
,
A. N.
, “
Zur umkehrbarkeit der statistischen naturgesetze
,”
Math. Ann.
113
,
766
772
(
1937
);
[
Kolmogorov
,
A. N.
,
Ob Obratimosti Statisticheskikh Zakonov Prirody, Collection of Articles on Probability Theory and Mathematical Statistics
(
Nauka, Moscow
,
1986
), pp.
197
204
].
30.
Kurchan
,
J.
, “
Fluctuation theorem for stochastic dynamics
,”
J. Phys. A: Math. Gen.
31
,
3719
3729
(
1998
).
31.
Kuo
,
H. H.
,
Gaussian Measures in Banach Spaces
,
Lecture Notes in Mathematics Vol. 463
(
Springer-Verlag
,
Berlin
,
1975
).
32.
Lebowitz
,
J. L.
and
Spohn
,
H.
, “
A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics
,”
J. Stat. Phys.
95
,
333
365
(
1999
).
33.
Nicolis
,
G.
and
Prigogine
,
I.
,
Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations
(
Wiley
,
New York
,
1977
).
34.
Prigogine
,
I.
,
Introduction to Thermodynamics of Irreversible Processes
, 2nd ed. (
Interscience
,
New York
,
1961
).
35.
Qian
,
H.
, “
Mathematical formalism for isothermal linear irreversibility
,”
Proc. R. Soc. A
457
,
1645
1655
(
2001
).
36.
Qian
,
M. P.
,
Qian
,
M.
, and
Gong
,
G. L.
, “
The reversibility and the entropy production of Markov processes
,”
Contemp. Math.
118
,
255
261
(
1991
).
37.
Revuz
,
D.
and
Yor
,
M.
,
Continuous Martingales and Brownian Motion
(
Springer-Verlag
,
New York
,
1999
).
38.
Rey-Bellet
,
L.
and
Thomas
,
L. E.
, “
Fluctionations of the entropy production in anharmonic chains
,”
Ann. Henri Poicaré
3
(
3
),
483
502
(
2002
).
39.
Rudin
,
W.
,
Functional Analysis
, 2nd ed. (
McGraw-Hill Companies, Inc.
,
1991
).
40.
Sevick
,
E. M.
,
Prabhakar
,
R.
,
Williams
,
S. R.
, and
Searles
,
D. J.
, “
Fluctuation theorems
,”
Annu. Rev. Phys. Chem.
59
,
603
633
(
2008
).
41.
Simon
,
B.
,
Trace Ideals and Their Applications
, 2nd ed.
Mathematical Surveys and Monographs
(
American Mathematical Society
,
2005
).
42.
Wang
,
R.
and
Xu
,
L.
, “
Asymptotics of the entropy production rate for d-Dimensional Ornstein-Uhlenbeck Processes
,”
J. Stat. Phys.
160
(
5
),
1336
1353
(
2015
).
43.
L
,
Wu
, “
Large and moderate deviations and exponential convergence for stochastic damping Hamiltionian systems
,”
Stochastic Proc. Appl.
91
,
205
238
(
2001
).
44.
Zhang
,
X. J.
,
Qian
,
H.
, and
Qian
,
M.
, “
Stochastic theory of nonequilibrium steady states and its applications (Part I)
,”
Phys. Rep.
510
,
1
86
(
2012
).
You do not currently have access to this content.