Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades. There exist very few results for steady-state fluctuation theorem of sample entropy production rate in terms of large deviation principle for diffusion processes due to the technical difficulties. Here we give a proof for the steady-state fluctuation theorem of a diffusion process in magnetic fields, with explicit expressions of the free energy function and rate function. The proof is based on the Karhunen-Loève expansion of complex-valued Ornstein-Uhlenbeck process.
REFERENCES
1.
2.
Ash
, R. B.
and Gardner
, M. F.
, Topics in Stochastic Processes
(Academic Press
, New York
, 1975
).3.
Balescu
, R.
, Statistical Dynamics: Matter Out of Equilibrium
(Imperial College Press
, London
, 1997
).4.
Bertini
, L.
and Di Gesù
, G.
, “Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes
,” ALEA, Lat. Am. J. Probab. Math. Stat.
12
, 743
–763
(2015
).5.
Bridgman
, P.
, “The second law of thermodynamics and irreversible processes
,” Phys. Rev.
58
, 845
(1940
).6.
Chen
, Y.
and Liu
, Y.
, “On the eigenfunctions of the complex Ornstein-Uhlenbeck operators
,” Kyoto J. Math.
54
(3
), 577
–596
(2014
).7.
Dembo
, A.
and Zeitouni
, O.
, Large Deviations Techniques And Applications
(Springer-Verlag
, New York
, 2000
).8.
Deheuvels
, P.
, “Karhunen-Loeve expansions of mean-centered Wiener processes
,” in High Dimensional Probability
, IMS Lecture Notes-Monograph Series
Vol. 51
(Inst. Math. Statist.
, Beachwood, OH
, 2006
), pp. 62
–76
.9.
Deheuvels
, P.
, “Karhunen-Loeve expansion for a mean-centered Brownian bridge
,” Statist. Probab. Lett.
77
, 1190
–1200
(2007
).10.
Deheuvels
, P.
and Martynov
, G.
, “Karhunen-Loeve expansions for weighted Wiener processes and Brownian bridges via Bessel functions
,” in Progress in Probability
(Birkhauser
, Basel
, 2003
), Vol. 55
, pp. 57
–93
.11.
Eckart
, C.
, “The thermodynamics of irreversible processes. I. The simple fluid
,” Phys. Rev.
58
, 267
(1940
).12.
Eckart
, C.
, “The thermodynamics of irreversible processes. II. Fluid mixtures
,” Phys. Rev.
58
, 269
(1940
).13.
Evans
, D. J.
, Cohen
, E. G. D.
, and Morriss
, G. P.
, “Probability of second law violation in steady flows
,” Phys. Rev. Lett.
71
, 2401
–2404
(1993
).14.
Friz
, P. K.
, Gassiat
, P.
, and Lyons
, T.
, “Physical Brownian motion in a magnetic field as a rough path
,” Trans. Am. Math. Soc.
367
, 7939
–7955
(2015
).15.
Friz
, P. K.
and Hairer
, M.
, A Course on Rough Paths, With an Introduction to Regularity Structures
(Springer
, 2014
).16.
Gallavotti
, G.
and Cohen
, E. G. D.
, “Dynamical ensembles in stationary states
,” J. Stat. Phys.
80
, 931
–970
(1995
).17.
Ge
, H.
, Qian
, M.
, and Qian
, H.
, “Stochastic theory of nonequilibrium steady states (Part II): Applications in chemical biophysics
,” Phys. Rep.
510
, 87
–118
(2012
).18.
19.
Hill
, T. L.
, Free Energy Transduction and Biochemical Cycle Kinetics
(Springer-Verlag
, New York
, 1995
).20.
Itô
, K.
, “Complex multiple Wiener integral
,” Jpn. J. Math.
22
, 63
–86
(1953
), reprinted in,Kiyosi Itô Selected Papers edited by Daniel W. Stroock and S. R. S. Varadhan (Springer-Verlag, 1987).21.
Jaksic
, V.
, Nersesyan
, V.
, Pillet
, C.-A.
, and Shirikyan
, A.
, “Large deviations from a stationary measure for a class of dissipative PDE’s with random kicks
,” Commun. Pure Appl. Math.
68
(12
), 2108
–2143
(2015
).22.
Jiang
, D. Q.
, Qian
, M.
, and Qian
, M. P.
, “Mathematical theory of nonequilibrium steady states—On the frontier of probability and dynamical systems
,” in Lecture Notes in Mathematics
(Springer-Verlag
, Berlin
, 2004
), Vol. 1833
.23.
Jiang
, D.-Q.
, Qian
, M.
, and Zhang
, F.-X.
, “Entropy production fluctuations of finite Markov chains
,” J. Math. Phys.
44
(9
), 4176
(2003
).24.
Kac
, M.
, “Random walk in the presence of absorbing barriers
,” Ann. Math. Stat.
16
, 62
–67
(1945
).25.
Kac
, M.
and Siegert
, A. J. F.
, “An explicit representation of a stationary Gaussian process
,” Ann. Math. Stat.
18
, 438
–442
(1947
).26.
Kifer
, Y.
, “Large deviations in dynamical systems and stochastic processes
,” Trans. Am. Math. Soc.
321
(2
), 505
–524
(1990
).27.
Kim
, W. H.
, “On the behavior of the EPR of a diffusion process in nonequilibrium steady state
,” Ph.D. thesis, University of Washington
, Seattle, 2011
.28.
Kolmogorov
,A. N.
, “Zur theorie der Markoffschen ketten
,” Math. Ann.
112
, 155
–160
(1936
);[
Kolmogorov
, A. N.
, K Teorii Tsepei Markova, Collection of Articles on Probability Theory and Mathematical Statistics
(Nauka, Moscow
, 1986
), pp. 173
–178
].29.
Kolmogorov
,A. N.
, “Zur umkehrbarkeit der statistischen naturgesetze
,” Math. Ann.
113
, 766
–772
(1937
);[
Kolmogorov
, A. N.
, Ob Obratimosti Statisticheskikh Zakonov Prirody, Collection of Articles on Probability Theory and Mathematical Statistics
(Nauka, Moscow
, 1986
), pp. 197
–204
].30.
Kurchan
, J.
, “Fluctuation theorem for stochastic dynamics
,” J. Phys. A: Math. Gen.
31
, 3719
–3729
(1998
).31.
Kuo
, H. H.
, Gaussian Measures in Banach Spaces
, Lecture Notes in Mathematics Vol. 463
(Springer-Verlag
, Berlin
, 1975
).32.
Lebowitz
, J. L.
and Spohn
, H.
, “A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics
,” J. Stat. Phys.
95
, 333
–365
(1999
).33.
Nicolis
, G.
and Prigogine
, I.
, Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations
(Wiley
, New York
, 1977
).34.
Prigogine
, I.
, Introduction to Thermodynamics of Irreversible Processes
, 2nd ed. (Interscience
, New York
, 1961
).35.
Qian
, H.
, “Mathematical formalism for isothermal linear irreversibility
,” Proc. R. Soc. A
457
, 1645
–1655
(2001
).36.
Qian
, M. P.
, Qian
, M.
, and Gong
, G. L.
, “The reversibility and the entropy production of Markov processes
,” Contemp. Math.
118
, 255
–261
(1991
).37.
Revuz
, D.
and Yor
, M.
, Continuous Martingales and Brownian Motion
(Springer-Verlag
, New York
, 1999
).38.
Rey-Bellet
, L.
and Thomas
, L. E.
, “Fluctionations of the entropy production in anharmonic chains
,” Ann. Henri Poicaré
3
(3
), 483
–502
(2002
).39.
40.
Sevick
, E. M.
, Prabhakar
, R.
, Williams
, S. R.
, and Searles
, D. J.
, “Fluctuation theorems
,” Annu. Rev. Phys. Chem.
59
, 603
–633
(2008
).41.
Simon
, B.
, Trace Ideals and Their Applications
, 2nd ed. Mathematical Surveys and Monographs
(American Mathematical Society
, 2005
).42.
Wang
, R.
and Xu
, L.
, “Asymptotics of the entropy production rate for d-Dimensional Ornstein-Uhlenbeck Processes
,” J. Stat. Phys.
160
(5
), 1336
–1353
(2015
).43.
L
, Wu
, “Large and moderate deviations and exponential convergence for stochastic damping Hamiltionian systems
,” Stochastic Proc. Appl.
91
, 205
–238
(2001
).44.
Zhang
, X. J.
, Qian
, H.
, and Qian
, M.
, “Stochastic theory of nonequilibrium steady states and its applications (Part I)
,” Phys. Rep.
510
, 1
–86
(2012
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.