The linear Boltzmann equation can be solved with separation of variables in one dimension, i.e., in three-dimensional space with planar symmetry. In this method, solutions are given by superpositions of eigenmodes which are sometimes called singular eigenfunctions. In this paper, we explore the singular-eigenfunction approach in flatland or two-dimensional space.

1.
Apresyan
,
L. A.
and
Kravtsov
,
Y. A.
,
Radiation Transfer: Statistical and Wave Aspects
(
Gordon and Breach
,
1996
).
2.
Arridge
,
S. R.
, “
Optical tomography in medical imaging
,”
Inverse Probl.
15
,
R41
R93
(
1999
).
3.
Arridge
,
S. R.
,
Kaipio
,
J. P.
,
Kolehmainen
,
V.
,
Schweiger
,
M.
,
Somersalo
,
E.
,
Tarvainen
,
T.
, and
Vauhkonen
,
M.
, “
Approximation errors and model reduction with an application in optical diffusion tomography
,”
Inverse Probl.
22
,
175
195
(
2006
).
4.
Arridge
,
S. R.
, “
Optical tomography: Forward and inverse problems
,”
Inverse Probl.
25
,
123010
(
2009
).
5.
Bal
,
G.
,
Freilikher
,
V.
,
Papanicolaou
,
G.
, and
Ryzhik
,
L.
, “
Wave transport along surfaces with random impedance
,”
Phys. Rev. B
62
,
6228
6240
(
2000
).
6.
Case
,
K. M.
, “
Plasma oscillations
,”
Ann. Phys.
7
,
349
364
(
1959
).
7.
Case
,
K. M.
, “
Elementary solutions of the transport equation and their applications
,”
Ann. Phys.
9
,
1
23
(
1960
).
8.
Case
,
K. M.
, “
Scattering theory, orthogonal polynomials, and transport equation
,”
J. Math. Phys.
15
,
974
983
(
1974
).
9.
Case
,
K. M.
and
Zweifel
,
P. F.
,
Linear Transport Theory
(
Addison-Wesley
,
1967
).
10.
Chandrasekhar
,
S.
,
Radiative Transfer
(
Dover
,
1960
).
11.
Davison
,
B.
, “
Angular distribution due to an isotropic point source and spherically symmetrical eigensolutions of the transport equation
,” Canadian Report No. MT-112, National Research Council of Canada, Division of Atomic Energy, 1945.
12.
Davison
,
B.
,
Neutron Transport Theory
(
Oxford University Press
,
1957
).
13.
Dede
,
K. M.
, “
An explicit solution of the one velocity multi-dimensional Boltzmann-equation in PN approximation
,”
Nukleonik
6
,
267
271
(
1964
).
14.
Duderstadt
,
J. J.
and
Martin
,
W. R.
,
Transport Theory
(
John Wiley & Sons, Inc.
,
1979
).
15.
Ganapol
,
B. D.
, “
A consistent theory of neutral particle transport in an infinite medium
,”
Transp. Theory Stat. Phys.
29
,
43
68
(
2000
).
16.
Ganapol
,
B. D.
, “
The infinite medium Green’s function of monoenergetic neutron transport theory via fourier transform
,”
Nucl. Sci. Eng.
180
,
224
246
(
2015
).
17.
Garcia
,
R. D. M.
and
Siewert
,
C. E.
, “
On the dispersion function in particle transport theory
,”
J. Appl. Math. Phys.
33
,
801
806
(
1982
).
18.
Garcia
,
R. D. M.
and
Siewert
,
C. E.
, “
On discrete spectrum calculations in radiative transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
42
,
385
394
(
1989
).
19.
González-Roríguez
,
P.
and
Kim
,
A. D.
, “
Diffuse optical tomography using the one-way radiative transfer equation
,”
Biomed. Opt. Express
6
,
2006
2021
(
2015
).
20.
Heino
,
J.
,
Arridge
,
S. R.
,
Sikora
,
J.
, and
Somersalo
,
E.
, “
Anisotropic effects in highly scattering media
,”
Phys. Rev. E
68
,
031908
(
2003
).
21.
Henyey
,
L. G.
and
Greenstein
,
J. L.
, “
Diffuse radiation in the galaxy
,”
Astrophys. J.
93
,
70
83
(
1941
).
22.
Inönü
,
E.
, “
Orthogonality of a set of polynomials encountered in neutron transport and radiative transfer theories
,”
J. Math. Phys.
11
,
568
(
1970
).
23.
Ishimaru
,
A.
,
Wave Propagation and Scattering in Random Media
(
Academic Press
,
1978
).
24.
Johnson
,
S. R.
and
Larsen
,
E. W.
, “
Diffusion boundary conditions in flatland geometry
,”
Trans. Am. Nucl. Soc.
105
,
446
448
(
2011
).
25.
Klose
,
A. D.
,
Netz
,
U.
,
Beuthan
,
J.
, and
Hielscher
,
A. H.
, “
Optical tomography using the time-independent equation of radiative transfer. Part 1. Forward model
,”
J. Quant. Spectrosc. Radiat. Transfer
72
,
691
713
(
2002
).
26.
Kobayashi
,
K.
, “
Spherical harmonics solutions of multi-dimensional neutron transport equation by finite fourier transformation
,”
J. Nucl. Sci. Tech.
14
,
489
501
(
1977
).
27.
Kohout
,
A.
and
Meylan
,
M. H.
, “
A model for wave scattering in the marginal ice zone based on a two-dimensional floating elastic plate solution
,”
Ann. Glaciol.
44
,
101
107
(
2006
).
28.
Liemert
,
A.
and
Kienle
,
A.
, “
Radiative transfer in two-dimensional infinitely extended scattering media
,”
J. Phys. A: Math. Theor.
44
,
505206
(
2011
).
29.
Liemert
,
A.
and
Kienle
,
A.
, “
Analytical approach for solving the radiative transfer equation in two-dimensional layered media
,”
J. Quant. Spectrosc. Radiat. Transfer
113
,
559
564
(
2012
).
30.
Liemert
,
A.
and
Kienle
,
A.
, “
Two-dimensional radiative transfer due to curved Dirac delta line sources
,”
Waves Random Complex Media
23
,
461
474
(
2013
).
31.
Machida
,
M.
,
Panasyuk
,
G. Y.
,
Schotland
,
J. C.
, and
Markel
,
V. A.
, “
The Green’s function for the radiative transport equation in the slab geometry
,”
J. Phys. A: Math. Theor.
43
,
065402
(
2010
).
32.
Machida
,
M.
, “
Singular eigenfunctions for the three-dimensional radiative transport equation
,”
J. Opt. Soc. Am. A
31
,
67
74
(
2014
).
33.
Machida
,
M.
, “
An FN method for the radiative transport equation in three dimensions
,”
J. Phys. A: Math. Theor.
48
,
325001
(
2015
).
34.
Markel
,
V. A.
, “
Modified spherical harmonics method for solving the radiative transport equation
,”
Waves Random Media
14
,
L13
L19
(
2004
).
35.
McCormick
,
N. J.
and
Kuščer
,
I.
, “
Bi-orthogonality relations for solving half-space transport problems
,”
J. Math. Phys.
7
,
2036
2045
(
1966
).
36.
Mika
,
J. R.
, “
Neutron transport with anisotropic scattering
,”
Nucl. Sci. Eng.
11
,
415
427
(
1961
).
37.
Muskhelishvili
,
N. I.
,
Singular Integral Equations
(
Wolters-Noordhoff Publishing
,
1958
).
38.
Panasyuk
,
G.
,
Schotland
,
J. C.
, and
Markel
,
V. A.
, “
Radiative transport equation in rotated reference frames
,”
J. Phys. A: Math. Gen.
39
,
115
137
(
2006
).
39.
Peraiah
,
A.
,
An Introduction to Radiative Transfer
(
Cambridge University Press
,
2002
).
40.
Sato
,
H.
and
Fehler
,
M. C.
,
Seismic Wave Propagation and Scattering in the Heterogeneous Earth
(
Springer-Verlag
,
1997
).
41.
Schotland
,
J. C.
and
Markel
,
V. A.
, “
Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation
,”
Inv. Prob. Imag.
1
,
181
188
(
2007
).
42.
Shultis
,
J. K.
and
Hill
,
T. R.
, “
The discrete eigenvalue problem for azimuthally dependent transport theory
,”
Nucl. Sci. Eng.
59
,
53
56
(
1976
).
43.
Siewert
,
C. E.
, “
The FN method for solving radiative-transfer problems in plane geometry
,”
Astrophys. Space Sci.
58
,
131
137
(
1978
).
44.
Siewert
,
C. E.
and
Benoist
,
P.
, “
The FN method in neutron-transport theory. Part I: Theory and applications
,”
Nucl. Sci. Eng.
69
,
156
160
(
1979
).
45.
Sobolev
,
V. V.
,
Light Scattering in Planetary Atmospheres
(
Pergamon
,
1975
).
46.
Tarvainen
,
T.
,
Vauhkonen
,
M.
, and
Arridge
,
S. R.
, “
Gauss-Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation
,”
J. Quant. Spectrosc. Radiat. Transfer
109
,
2767
2778
(
2008
).
47.
Thomas
,
G. E.
and
Stamnes
,
K.
,
Radiative Transfer in the Atmosphere and Ocean
(
Cambridge University Press
,
1999
).
48.
Van Kampen
,
N. G.
, “
On the theory of stationary waves in plasmas
,”
Physica
21
,
949
963
(
1955
).
49.
Volokitin
,
A. I.
and
Persson
,
B. N. J.
, “
Radiative heat transfer between nanostructures
,”
Phys. Rev. B
63
,
205404
(
2001
).
50.
Wigner
,
E. P.
, “
Mathematical problems of nuclear reactor theory
,”
Nucl. React. Theory
11
,
89
104
(
1961
).
You do not currently have access to this content.