The linear Boltzmann equation can be solved with separation of variables in one dimension, i.e., in three-dimensional space with planar symmetry. In this method, solutions are given by superpositions of eigenmodes which are sometimes called singular eigenfunctions. In this paper, we explore the singular-eigenfunction approach in flatland or two-dimensional space.
REFERENCES
1.
Apresyan
, L. A.
and Kravtsov
, Y. A.
, Radiation Transfer: Statistical and Wave Aspects
(Gordon and Breach
, 1996
).2.
Arridge
, S. R.
, “Optical tomography in medical imaging
,” Inverse Probl.
15
, R41
–R93
(1999
).3.
Arridge
, S. R.
, Kaipio
, J. P.
, Kolehmainen
, V.
, Schweiger
, M.
, Somersalo
, E.
, Tarvainen
, T.
, and Vauhkonen
, M.
, “Approximation errors and model reduction with an application in optical diffusion tomography
,” Inverse Probl.
22
, 175
–195
(2006
).4.
Arridge
, S. R.
, “Optical tomography: Forward and inverse problems
,” Inverse Probl.
25
, 123010
(2009
).5.
Bal
, G.
, Freilikher
, V.
, Papanicolaou
, G.
, and Ryzhik
, L.
, “Wave transport along surfaces with random impedance
,” Phys. Rev. B
62
, 6228
–6240
(2000
).6.
Case
, K. M.
, “Plasma oscillations
,” Ann. Phys.
7
, 349
–364
(1959
).7.
Case
, K. M.
, “Elementary solutions of the transport equation and their applications
,” Ann. Phys.
9
, 1
–23
(1960
).8.
Case
, K. M.
, “Scattering theory, orthogonal polynomials, and transport equation
,” J. Math. Phys.
15
, 974
–983
(1974
).9.
10.
11.
Davison
, B.
, “Angular distribution due to an isotropic point source and spherically symmetrical eigensolutions of the transport equation
,” Canadian Report No. MT-112, National Research Council of Canada, Division of Atomic Energy, 1945.12.
13.
Dede
, K. M.
, “An explicit solution of the one velocity multi-dimensional Boltzmann-equation in PN approximation
,” Nukleonik
6
, 267
–271
(1964
).14.
Duderstadt
, J. J.
and Martin
, W. R.
, Transport Theory
(John Wiley & Sons, Inc.
, 1979
).15.
Ganapol
, B. D.
, “A consistent theory of neutral particle transport in an infinite medium
,” Transp. Theory Stat. Phys.
29
, 43
–68
(2000
).16.
Ganapol
, B. D.
, “The infinite medium Green’s function of monoenergetic neutron transport theory via fourier transform
,” Nucl. Sci. Eng.
180
, 224
–246
(2015
).17.
Garcia
, R. D. M.
and Siewert
, C. E.
, “On the dispersion function in particle transport theory
,” J. Appl. Math. Phys.
33
, 801
–806
(1982
).18.
Garcia
, R. D. M.
and Siewert
, C. E.
, “On discrete spectrum calculations in radiative transfer
,” J. Quant. Spectrosc. Radiat. Transfer
42
, 385
–394
(1989
).19.
González-Roríguez
, P.
and Kim
, A. D.
, “Diffuse optical tomography using the one-way radiative transfer equation
,” Biomed. Opt. Express
6
, 2006
–2021
(2015
).20.
Heino
, J.
, Arridge
, S. R.
, Sikora
, J.
, and Somersalo
, E.
, “Anisotropic effects in highly scattering media
,” Phys. Rev. E
68
, 031908
(2003
).21.
Henyey
, L. G.
and Greenstein
, J. L.
, “Diffuse radiation in the galaxy
,” Astrophys. J.
93
, 70
–83
(1941
).22.
Inönü
, E.
, “Orthogonality of a set of polynomials encountered in neutron transport and radiative transfer theories
,” J. Math. Phys.
11
, 568
(1970
).23.
24.
Johnson
, S. R.
and Larsen
, E. W.
, “Diffusion boundary conditions in flatland geometry
,” Trans. Am. Nucl. Soc.
105
, 446
–448
(2011
).25.
Klose
, A. D.
, Netz
, U.
, Beuthan
, J.
, and Hielscher
, A. H.
, “Optical tomography using the time-independent equation of radiative transfer. Part 1. Forward model
,” J. Quant. Spectrosc. Radiat. Transfer
72
, 691
–713
(2002
).26.
Kobayashi
, K.
, “Spherical harmonics solutions of multi-dimensional neutron transport equation by finite fourier transformation
,” J. Nucl. Sci. Tech.
14
, 489
–501
(1977
).27.
Kohout
, A.
and Meylan
, M. H.
, “A model for wave scattering in the marginal ice zone based on a two-dimensional floating elastic plate solution
,” Ann. Glaciol.
44
, 101
–107
(2006
).28.
Liemert
, A.
and Kienle
, A.
, “Radiative transfer in two-dimensional infinitely extended scattering media
,” J. Phys. A: Math. Theor.
44
, 505206
(2011
).29.
Liemert
, A.
and Kienle
, A.
, “Analytical approach for solving the radiative transfer equation in two-dimensional layered media
,” J. Quant. Spectrosc. Radiat. Transfer
113
, 559
–564
(2012
).30.
Liemert
, A.
and Kienle
, A.
, “Two-dimensional radiative transfer due to curved Dirac delta line sources
,” Waves Random Complex Media
23
, 461
–474
(2013
).31.
Machida
, M.
, Panasyuk
, G. Y.
, Schotland
, J. C.
, and Markel
, V. A.
, “The Green’s function for the radiative transport equation in the slab geometry
,” J. Phys. A: Math. Theor.
43
, 065402
(2010
).32.
Machida
, M.
, “Singular eigenfunctions for the three-dimensional radiative transport equation
,” J. Opt. Soc. Am. A
31
, 67
–74
(2014
).33.
Machida
, M.
, “An FN method for the radiative transport equation in three dimensions
,” J. Phys. A: Math. Theor.
48
, 325001
(2015
).34.
Markel
, V. A.
, “Modified spherical harmonics method for solving the radiative transport equation
,” Waves Random Media
14
, L13
–L19
(2004
).35.
McCormick
, N. J.
and Kuščer
, I.
, “Bi-orthogonality relations for solving half-space transport problems
,” J. Math. Phys.
7
, 2036
–2045
(1966
).36.
Mika
, J. R.
, “Neutron transport with anisotropic scattering
,” Nucl. Sci. Eng.
11
, 415
–427
(1961
).37.
Muskhelishvili
, N. I.
, Singular Integral Equations
(Wolters-Noordhoff Publishing
, 1958
).38.
Panasyuk
, G.
, Schotland
, J. C.
, and Markel
, V. A.
, “Radiative transport equation in rotated reference frames
,” J. Phys. A: Math. Gen.
39
, 115
–137
(2006
).39.
Peraiah
, A.
, An Introduction to Radiative Transfer
(Cambridge University Press
, 2002
).40.
Sato
, H.
and Fehler
, M. C.
, Seismic Wave Propagation and Scattering in the Heterogeneous Earth
(Springer-Verlag
, 1997
).41.
Schotland
, J. C.
and Markel
, V. A.
, “Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation
,” Inv. Prob. Imag.
1
, 181
–188
(2007
).42.
Shultis
, J. K.
and Hill
, T. R.
, “The discrete eigenvalue problem for azimuthally dependent transport theory
,” Nucl. Sci. Eng.
59
, 53
–56
(1976
).43.
Siewert
, C. E.
, “The FN method for solving radiative-transfer problems in plane geometry
,” Astrophys. Space Sci.
58
, 131
–137
(1978
).44.
Siewert
, C. E.
and Benoist
, P.
, “The FN method in neutron-transport theory. Part I: Theory and applications
,” Nucl. Sci. Eng.
69
, 156
–160
(1979
).45.
46.
Tarvainen
, T.
, Vauhkonen
, M.
, and Arridge
, S. R.
, “Gauss-Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation
,” J. Quant. Spectrosc. Radiat. Transfer
109
, 2767
–2778
(2008
).47.
Thomas
, G. E.
and Stamnes
, K.
, Radiative Transfer in the Atmosphere and Ocean
(Cambridge University Press
, 1999
).48.
Van Kampen
, N. G.
, “On the theory of stationary waves in plasmas
,” Physica
21
, 949
–963
(1955
).49.
Volokitin
, A. I.
and Persson
, B. N. J.
, “Radiative heat transfer between nanostructures
,” Phys. Rev. B
63
, 205404
(2001
).50.
Wigner
, E. P.
, “Mathematical problems of nuclear reactor theory
,” Nucl. React. Theory
11
, 89
–104
(1961
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.