Simultaneous use of discrete and continuous bases in quantum systems is not possible in the context of Hilbert spaces, but only in the more general structure of rigged Hilbert spaces (RHS). In addition, the relevant operators in RHS (but not in Hilbert space) are a realization of elements of a Lie enveloping algebra and support representations of semigroups. We explicitly construct here basis dependent RHS of the line and half-line and relate them to the universal enveloping algebras of the Weyl-Heisenberg algebra and su(1, 1), respectively. The complete sub-structure of both RHS and of the operators acting on them is obtained from their algebraic structures or from the related fractional Fourier transforms. This allows us to describe both quantum and signal processing states and their dynamics. Two relevant improvements are introduced: (i) new kinds of filters related to restrictions to subspaces and/or the elimination of high frequency fluctuations and (ii) an operatorial structure that, starting from fix objects, describes their time evolution.

1.
S. C.
Coutinho
,
A Premier on Algebraic D-Modulus
(
Cambridge University Press
,
Cambridge, MA
,
1995
).
2.
G. B.
Folland
,
Fourier Analysis and Its Applications
(
Pacific Grove
,
CA, Wadsworth
,
1992
).
3.
E.
Celeghini
and
M. A.
del Olmo
,
Ann. Phys.
335
,
78
(
2013
).
4.
E.
Celeghini
and
M. A.
del Olmo
,
J. Phys.: Conf. Ser.
597
,
012022
(
2015
).
5.
E.
Celeghini
,
J. Phys.: Conf. Ser.
626
,
012047
(
2015
).
6.
H. M.
Ozaktas
,
Z.
Zalevsky
, and
M.
Alper Kutay
,
The Fractional Fourier Transform
(
Wiley
,
Chichester
,
2001
).
7.
W. A.
Skok Narayanan
and
K. M. M.
Prabhu
,
Microprocessors Microsyst.
27
,
511
(
2003
).
8.
I. M.
Gelfand
and
N. Ya.
Vilenkin
,
Generalized Functions: Applications to Harmonic Analysis
(
Academic
,
New York
,
1964
).
9.
J. E.
Roberts
,
Commun. Math. Phys.
3
,
98
(
1966
).
10.
J. P.
Antoine
,
J. Math. Phys.
10
,
53
(
1969
).
11.
O.
Melsheimer
,
J. Math. Phys.
15
,
902
(
1974
).
12.
A.
Bohm
,
The Rigged Hilbert Space and Quantum Mechanics
,
Springer Lecture Notes in Physics
(
Springer
,
Berlin
,
1978
), Vol.
78
.
13.
A.
Bohm
and
M.
Gadella
,
Dirac Kets, Gamow Vectors and Gelfand Triplets
,
Springer Lecture Notes in Physics
(
Springer
,
Berlin
,
1989
), Vol.
348
.
14.
M.
Gadella
and
F.
Gómez
,
Found. Phys.
32
,
815
(
2002
).
15.

This means that any Cauchy sequence in Φ on the Hilbert space norm has a limit in H.

16.
J.
Horvath
,
Topological Vector Spaces and Distributions
(
Addison-Wesley
,
Reading, MA
,
1966
).
17.
M.
Gadella
and
F.
Gómez
,
Int. J. Theor. Phys.
42
,
2225
(
2003
).
18.
M.
Gadella
and
F.
Gómez
,
Acta Appl. Math.
109
,
94
(
2010
).
19.
For any ϕH, we can define a functional, Fϕ ∈ Φ× in the following way:
where the product in the right hand side denotes the ordinary scalar product on H. The mapping ϕFϕ is one to one and defines a canonical injection HΦ×.
20.

For a thoroughly study of changes of representations involving continuous bases see Ref. 18.

21.
M.
Hammermesh
,
Group Theory
(
Addison-Wesley
,
Reading, MA
,
1962
).
22.
V.
Bargmann
,
Ann. Math.
59
,
1
(
1954
).
23.
E.
Celeghini
and
M.
Tarlini
,
Nuovo Cimento B
65
,
172
(
1981
).
24.

Remember that we are considering antilinear mappings in our duals and not linear as customary.

25.
K.
Maurin
,
General Eigenfunction Expansions and Unitary Representations of Topological Groups
(
Polish Scientific Publishers
,
Warszawa
,
1968
).
26.
A.
Pietsch
,
Nuclear Topological Vector Spaces
(
Springer
,
Berlin
,
1972
).
27.

In fact (λ) = ρ(λ) , where ρ(λ) is the Radom-Nikodym derivative of μ with respect to the Lebesgue measure. Then, we may define a new λ by ρ(λ)λ without loss of generality.

28.

For instance, x|x=2πδ(xx), which has a meaning as a kernel.10 

29.

This converges in the strong operator sense on L2(ℝ).

30.
M.
Reed
and
B.
Simon
,
Functional Analysis
(
Academic
,
New York
,
1972
).
31.
M.
Abramovich
and
I. A.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1972
).
32.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisiert
, and
C. W.
Clark
(
Cambridge University Press
,
Cambridge, MA
,
2010
).
33.
G.
Lindblad
and
B.
Nagel
,
Ann. Inst. Henri Poincaré
13
,
27
(
1970
).
34.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
(
Clarendon Press
,
Oxford
,
1958
).
35.
A.
Bohm
,
M.
Gadella
, and
P.
Kielanowski
,
SIGMA
7
,
086
(
2011
).
36.
M.
Gadella
,
F.
Gómez-Cubillo
,
L.
Rodríguez
, and
S.
Wickramasekara
,
J. Math. Phys.
54
,
072303
(
2013
).
You do not currently have access to this content.