In this work, we analytically study the Schrödinger equation for the (non-pure) dipolar ion potential V(r) = q/r + Dcosθ/r2, in the case of 2D systems (systems in two-dimensional Euclidean plane) using the separation of variables and the Mathieu equations for the angular part. We give the expressions of eigenenergies and eigenfunctions and study their dependence on the dipole moment D. Imposing the condition of reality on the energies En,m implies that the dipole moment must not exceed a maximum value, otherwise the corresponding bound state disappears. We also find that the s states (m = 0) can no longer exist in the system as soon as the dipole term is present.
REFERENCES
1.
A. A.
Makarov
et al., “A systematic search for nonrelativistic systems with dynamical symmetries
,” Nuovo Cimento A
52
, 1061
(1967
).2.
H.
Hartmann
, “Die bewegung eines körpers in einem ringförmigen potentialfeld
,” Theor. Chim. Acta
24
, 201
(1972
).3.
A.
Hautot
, “Exact motion in noncentral electric fields
,” J. Math. Phys.
14
, 1320
(1973
).4.
A.
Gharbi
and A.
Bouda
, “Energy spectra of Hartmann and ring-shaped oscillator potentials using the quantum Hamilton–Jacobi formalism
,” Phys. Scr.
88
, 045007
(2013
).5.
A.
Bharali
, “Systematic search of exactly solvable ring-shaped potential using the transformation method
,” Phys. Scr.
88
, 035009
(2013
).6.
G. F.
Gribakin
and A. R.
Swann
, “Effect of dipole polarizability on positron binding by strongly polar molecules
,” J. Phys. B
48
, 215101
(2015
).7.
S.
Dong-Sheng
et al., “The quantum characteristics of a class of complicated double ring-shaped non-central potential
,” Phys. Scr.
89
, 045002
(2014
).8.
A. K.
Geim
and K. S.
Novoselov
, “The rise of graphene
,” Nat. Mater.
6
, 183
(2007
).9.
A. H.
Castro Neto
and K. S.
Novoselov
, “New directions in science and technology: Two-dimensional crystals
,” Rep. Prog. Phys.
74
, 082501
(2011
).10.
A. D.
Alhaidari
, “Analytic solution of the Schrödinger equation for an electron in the field of a molecule with an electric dipole moment
,” Ann. Phys.
323
, 1709
(2008
).11.
M.
Moumni
, A.
BenSlama
, and S.
Zaim
, “A new limit for the non-commutative space-time parameter
,” J. Geom. Phys.
61
, 151
(2011
).12.
E.
Fermi
and E.
Teller
, “The capture of negative mesotrons in matter
,” Phys. Rev.
72
, 399
(1947
).13.
J. M.
Lévy-Leblond
, “Electron capture by polar molecules
,” Phys. Rev.
153
, 1
(1967
).14.
A.
De Martino
et al., “Electric-dipole-induced universality for dirac fermions in graphene
,” Phys. Rev. Lett.
112
, 186603
(2014
).15.
J. C.
Cuenin
and H.
Siedentop
, “Dipoles in graphene have infinitely many bound states
,” J. Math. Phys.
55
, 122304
(2014
).16.
K.
Connolly
and D. J.
Griffiths
, “Critical dipoles in one, two, and three dimensions
,” Am. J. Phys.
75
, 6
(2007
).17.
E.
Mathieu
, “Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique
,” J. Math. Pure. Appl.
13
, 137
(1868
).18.
M.
Abramowitz
and I. A.
Stegun
, Handbook of Mathematical Functions
(Dover Publications
, New York
, 1972
).19.
G.
Floquet
, “Sur les équations différentielles linéaires à coefficients périodiques
,” Ann. Ec. Norm. Super.
12
, 47
(1883
).20.
F.
Bloch
, “Über die quantenmechanik der elektronen in kristallgittern
,” Z. Phys.
52
, 555
(1928
).21.
I. S.
Gradshteyn
and I. M.
Ryzhik
, in Table of Integrals, Series, and Products
, edited byA.
Jeffrey
and D.
Zwillinger
(Elsevier
, London
, 2007
).22.
B.
Zaslow
and M. E.
Zandler
, “Two-dimensional analog to the hydrogen atom
,” Am. J. Phys.
35
, 1118
(1967
).23.
D. G. W.
Parfitt
and M. E.
Portnoi
, “The two-dimensional hydrogen atom revisited
,” J. Math. Phys.
43
, 4681
(2002
).24.
H. E.
Camblong
, “Quantum anomaly in molecular physics
,” Phys. Rev. Lett.
87
, 220402
(2001
).25.
S. A.
Coon
and B. R.
Holstein
, “Anomalies in quantum mechanics: The 1/r2 potential
,” Am. J. Phys.
70
, 513
(2002
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.