To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.

1.
Andrews
,
G. E.
,
Askey
,
R.
, and
Roy
,
R.
,
Special Functions
(
Cambridge University Press
,
1999
).
2.
Barnett
,
S. M.
, “
Negative binomial states of quantized radiation fields
,”
J. Mod. Opt.
45
(
10
),
2201
-
2205
(
1998
).
3.
Comtet
,
A.
, “
On the Landau levels on the hyperbolic plane
,”
Ann. Phys.
173
(
1
),
185
-
209
(
1987
).
4.
Demni
,
N.
and
Mouayn
,
Z.
, “
Analysis of generalized Poisson distributions associated with higher Landau levels
,”
Infinite Dimens. Anal. Quantum Probab. Relat. Top.
18
(
4
),
13
(
2015
).
5.
Fu
,
H. C.
and
Sasaki
,
R.
, “
Negative binomial and multinomial states: Probability distributions and coherent states
,”
J. Math. Phys.
38
(
8
),
3968
-
3987
(
1997
).
6.
Gantsog
,
T.
,
Joshi
,
A.
, and
Tanas
,
R.
, “
Phase properties of binomial and negative binomial states
,”
Quantum Opt.: J. Eur. Opt. Soc. Part B
6
(
6
),
517
-
526
(
1994
).
7.
Gazeau
,
J. P.
,
Coherent States in Quantum Physics
(
Wiley
,
Weinheim
,
2009
).
8.
Giovannini
,
M.
, “
Multiplicity distributions in gravitational and strong interactions
,”
Phys. Lett. B
691
(
5
),
274
-
278
(
2010
).
9.
Gnedenko
,
B. V.
and
Kolmogorov
,
A. N.
,
Limit Distributions for Sums of Independent Random Variables
, Revised ed. (
Addison-Wesley
,
Reading, MA; London; Don Mills, ON
,
1954
), translated from the Russian, annotated and revised by K. L. Chung, with appendices by J. L. Doob and P. L. Hsu.
10.
Gradshteyn
,
I. S.
and
Ryzhik
,
I. M.
,
Table of Integrals, Series and Products
, 7th ed. (
Academic Press, Inc.
,
2007
).
11.
Ikeda
,
N.
and
Matsumoto
,
H.
, “
Brownian motion on the hyperbolic plane and Selberg trace formula
,”
J. Funct. Anal.
163
,
63
-
110
(
1999
).
12.
Mandel
,
L.
, “
Sub-Poissonian photon statistics in resonance fluorescence
,”
Opt. Lett.
4
(
7
),
205
-
207
(
1979
).
13.
Mouayn
,
Z.
, “
Coherent states attached to Landau levels on the Poincaré disc
,”
J. Phys. A: Math. Gen.
38
,
9309
-
9316
(
2005
).
14.
Mouayn
,
Z.
, “
Husimi’s Q-function of the isotonic oscillator in a generalized binomial states representation
,”
Math. Phys. Anal. Geom.
17
(
3-4
),
289
-
303
(
2014
).
15.
Mouayn
,
Z.
and
Touhami
,
A.
, “
Probability distributions attached to generalized Bargmann-Fock spaces in the complex plane
,”
Infinite Dimens. Anal. Quantum Probab. Relat. Top
13
(
2
),
257
-
271
(
2010
).
16.
Nakamura
,
T.
, “
A complete Riemann zeta distribution and the Riemann hypothesis
,”
Bernoulli
21
(
1
),
604
-
617
(
2015
).
17.
Sato
,
K.
, “
Lévy processes and infinitely divisible distributions
,” in
Cambridge Studies in Advanced Mathematics
(
Cambridge University Press
,
Cambridge
,
1999
).
18.
Srivastava
,
A.
and
Rao
,
A. B.
, “
On a polynomial of the form F4
,”
Indian J. Pure Appl. Math.
6
(
11
),
1326
-
1334
(
1975
).
19.
Steutel
,
F. W.
and
Van Harn
,
K.
,
Infinite Divisibility of Probability Distributions on The Real Line
(
Marcel Dekker, Inc.
,
New York, Basel
,
2004
).
20.
von Brzeski
,
J. G.
and
von Brzeski
,
V.
, “
Topological intensity shifts of electromagnetic field in Lobachevskian spaces
,”
Prog. Electromagn. Res.
43
,
163
-
179
(
2003
).
You do not currently have access to this content.