We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order 2N. These solutions, called solutions of order N, depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polynomials of degree 2N(N + 1) in x, y, and t depending on 2N − 2 parameters. So we get with this method an infinite hierarchy of solutions to the KPI equation.

1.
M. J.
Ablowitz
and
H.
Segur
, “
On the evolution of packets of water waves
,”
J. Fluid Mech.
92
,
691
715
(
1979
).
2.
M. J.
Ablowitz
and
P. A.
Clarkson
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering
(
Cambridge University Press
,
1991
).
3.
M. J.
Ablowitz
and
J.
Villarroel
, “
Solutions to the time dependent schrödinger and the Kadomtsev-Petviashvili equations
,”
Phys. Rev. Lett.
78
,
570
573
(
1997
).
4.
G.
Biondini
and
Y.
Kodama
, “
On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy
,”
J. Phys. A: Math. Gen.
36
,
10519
10536
(
2003
).
5.
A.
Bobenko
, “
Periodic multiphase solutions of the Kadomsev-Petviashvili equation
,”
J. Phys. A: Math. Gen.
22
,
1259
1274
(
1989
).
6.
M.
Boiti
,
J. J. P.
Leon
, and
F.
Pempinelli
, “
Spectral transform and orthogonality relations for the Kadomtsev-Petviashvili equation
,”
Phys. Lett. A
141
,
96
(
1989
).
7.
M.
Boiti
,
F.
Pempinelli
, and
A.
Pogrebkov
, “
Properties of the solutions of the Kadomtsev-Petviashvili equation
,”
J. Math. Phys.
35
,
4683
(
1994
).
8.
V. S.
Dryuma
, “
Analytic solution of the two-dimensional Korteweg-de Vries equation
,”
J. Exp. Theor. Phys.
19
,
387
(
1974
).
9.
P.
Dubard
and
V. B.
Matveev
, “
Multi-rogue waves solutions: From the NLS to the KP-I equation
,”
Nonlinearity
26
,
93
125
(
2013
).
10.
B. A.
Dubrovin
, “
Theta functions and non-linear equations
,”
Russ. Math. Surv.
36
(
2
),
11
92
(
1981
).
11.
N. C
Freeman
and
J. J. C.
Nimmo
, “
Rational solutions of the KdV equation in wronskian form
,”
Phys. Lett. A
96
(
9
),
443
446
(
1983
).
12.
P.
Gaillard
, “
Families of quasi-rational solutions of the NLS equation and multi-rogue waves
,”
J. Phys. A: Math. Theor.
44
,
1
15
(
2011
).
13.
P.
Gaillard
, “
Erratum: Deformations of third order Peregrine breather solutions of the NLS equation with four parameters
,”
Phys. Rev. E
88
,
042903
(
2013
).
14.
P.
Gaillard
and
M.
Gastineau
, “
Patterns of deformations of Peregrine breather of order 3 and 4, solutions to the NLS equation with multi-parameters
,”
J. Theor. Appl. Phys.
10
,
83
89
(
2016
).
15.
R.
Hirota
and
Y.
Ohta
, “
Hierarchies of coupled soliton equations
,”
Phys. Soc. Jpn.
60
,
798
809
(
1991
).
16.
A.
Kalla
, “
Fay’s identity in the theory of integrable systems
,” PhD thesis,
Université de Bourgogne
,
2011
.
17.
Y.
Kang
,
Y.
Zhang
, and
L.
Jin
, “
Soliton solution to BKP equation in wronskian form
,”
Appl. Math. Comput.
224
,
250
258
(
2013
).
18.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Circular rogue wave clusters
,”
Phys. Rev. E
84
,
056611-1
056611-7
(
2011
).
19.
D.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Triangular rogue wave cascades
,”
Phys. Rev. E
86
,
056602-1
056602-9
(
2012
).
20.
D. J.
Kedziora
,
A.
Ankiewicz
, and
N.
Akhmediev
, “
Classifying the hierarchy of the nonlinear Schrödinger equation rogue waves solutions
,”
Phys. Rev. E
88
,
013207-1
013207-12
(
2013
).
21.
Y.
Kodama
, “
Young diagrams and N solitons solutions to the KP equation
,”
J. Phys. A: Math. Gen.
37
,
11169
11190
(
2004
).
22.
G.
Latham
, “
Solutions of the Kadomtsev-Petviaschvili equation associated to rank-three commuting differential operators over a singular elliptic curve
,”
Physica D
41
,
55
66
(
1990
).
23.
V. X.
Ma
, “
Lump solutions to the KP equation
,”
Phys. Lett. A
379
,
1975
(
2015
).
24.
B. B.
Kadomtsev
and
V. I.
Petviashvili
, “
On the stability of solitary waves in weakly dispersing media
,”
Sov. Phys. Dokl.
15
(
6
),
539
541
(
1970
).
25.
I.
Krichever
, “
Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particules on a line
,”
Funct. Anal. Appl.
12
(
1
),
59
61
(
1978
).
26.
S. V.
Manakov
,
V. E.
Zakharov
,
L. A.
Bordag
, and
V. B.
Matveev
, “
Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction
,”
Phys. Lett. A
63
(
3
),
205
206
(
1977
).
27.
V. B.
Matveev
, “
Darboux transformation and explicit solutions of the Kadomtsev-Petviaschvili equation depending on functional parameters
,”
Lett. Math. Phys.
3
,
213
216
(
1979
).
28.
W.
Oevel
, “
Darboux theorems and wronskian formulas for integrable suystems I: Constrained KP flows
,”
Physica A
195
,
533
576
(
1993
).
29.
W.
Oevel
and
W.
Stramp
, “
Wronskian solutions of the constrained KP hierarchy
,”
J. Math. Phys.
37
,
6213
6219
(
1996
).
30.
D. E.
Pelinovsky
and
Y. A.
Stepanyants
, “
New multisolitons of the Kadomtsev-Petviashvili equation
,”
JETP Lett.
57
,
24
28
(
1993
).
31.
D. E.
Pelinovsky
, “
Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution
,”
J. Math. Phys.
35
,
5820
5830
(
1994
).
32.
D. E.
Pelinovsky
,
Y. A.
Stepanyants
, and
Y. A.
Kivshar
, “
Self-focusing of plane dark solitons in nonlinear defocusing media
,”
Phys. Rev. E
51
,
5016
5026
(
1995
).
33.
J.
Satsuma
and
M. J.
Ablowitz
, “
Two-dimensional lumps in nonlinear dispersive systems
,”
J. Math. Phys.
20
,
1496
1503
(
1979
).
34.
A. P.
Veselov
, “
Rational solutions of the Kadomtsev-Petviaschvili equation and Hamiltonian systems
,”
Russian Mathematical Surveys
35
(
1
),
239
240
(
1980
).
35.
J.
Weiss
, “
Modified equation, rational solutions and the Painlevé property for the Kadomtsev-Petviaschvili and Hitrota-Satsuma equation
,”
J. Math. Phys.
26
,
2174
(
1985
).
36.
T.
Xu
,
F. W.
Sun
,
Y.
Zhang
, and
J.
Li
, “
Multi-component wronskian solution to the Kadomtsev-Petviasvili equation
,”
Comput. Math. Math. Phys.
54
,
97
113
(
2014
).
You do not currently have access to this content.