We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order 2N. These solutions, called solutions of order N, depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polynomials of degree 2N(N + 1) in x, y, and t depending on 2N − 2 parameters. So we get with this method an infinite hierarchy of solutions to the KPI equation.
REFERENCES
1.
M. J.
Ablowitz
and H.
Segur
, “On the evolution of packets of water waves
,” J. Fluid Mech.
92
, 691
–715
(1979
).2.
M. J.
Ablowitz
and P. A.
Clarkson
, Solitons, Nonlinear Evolution Equations and Inverse Scattering
(Cambridge University Press
, 1991
).3.
M. J.
Ablowitz
and J.
Villarroel
, “Solutions to the time dependent schrödinger and the Kadomtsev-Petviashvili equations
,” Phys. Rev. Lett.
78
, 570
–573
(1997
).4.
G.
Biondini
and Y.
Kodama
, “On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy
,” J. Phys. A: Math. Gen.
36
, 10519
–10536
(2003
).5.
A.
Bobenko
, “Periodic multiphase solutions of the Kadomsev-Petviashvili equation
,” J. Phys. A: Math. Gen.
22
, 1259
–1274
(1989
).6.
M.
Boiti
, J. J. P.
Leon
, and F.
Pempinelli
, “Spectral transform and orthogonality relations for the Kadomtsev-Petviashvili equation
,” Phys. Lett. A
141
, 96
(1989
).7.
M.
Boiti
, F.
Pempinelli
, and A.
Pogrebkov
, “Properties of the solutions of the Kadomtsev-Petviashvili equation
,” J. Math. Phys.
35
, 4683
(1994
).8.
V. S.
Dryuma
, “Analytic solution of the two-dimensional Korteweg-de Vries equation
,” J. Exp. Theor. Phys.
19
, 387
(1974
).9.
P.
Dubard
and V. B.
Matveev
, “Multi-rogue waves solutions: From the NLS to the KP-I equation
,” Nonlinearity
26
, 93
–125
(2013
).10.
B. A.
Dubrovin
, “Theta functions and non-linear equations
,” Russ. Math. Surv.
36
(2
), 11
–92
(1981
).11.
N. C
Freeman
and J. J. C.
Nimmo
, “Rational solutions of the KdV equation in wronskian form
,” Phys. Lett. A
96
(9
), 443
–446
(1983
).12.
P.
Gaillard
, “Families of quasi-rational solutions of the NLS equation and multi-rogue waves
,” J. Phys. A: Math. Theor.
44
, 1
–15
(2011
).13.
P.
Gaillard
, “Erratum: Deformations of third order Peregrine breather solutions of the NLS equation with four parameters
,” Phys. Rev. E
88
, 042903
(2013
).14.
P.
Gaillard
and M.
Gastineau
, “Patterns of deformations of Peregrine breather of order 3 and 4, solutions to the NLS equation with multi-parameters
,” J. Theor. Appl. Phys.
10
, 83
–89
(2016
).15.
R.
Hirota
and Y.
Ohta
, “Hierarchies of coupled soliton equations
,” Phys. Soc. Jpn.
60
, 798
–809
(1991
).16.
A.
Kalla
, “Fay’s identity in the theory of integrable systems
,” PhD thesis, Université de Bourgogne
, 2011
.17.
Y.
Kang
, Y.
Zhang
, and L.
Jin
, “Soliton solution to BKP equation in wronskian form
,” Appl. Math. Comput.
224
, 250
–258
(2013
).18.
D. J.
Kedziora
, A.
Ankiewicz
, and N.
Akhmediev
, “Circular rogue wave clusters
,” Phys. Rev. E
84
, 056611-1
–056611-7
(2011
).19.
D.
Kedziora
, A.
Ankiewicz
, and N.
Akhmediev
, “Triangular rogue wave cascades
,” Phys. Rev. E
86
, 056602-1
–056602-9
(2012
).20.
D. J.
Kedziora
, A.
Ankiewicz
, and N.
Akhmediev
, “Classifying the hierarchy of the nonlinear Schrödinger equation rogue waves solutions
,” Phys. Rev. E
88
, 013207-1
–013207-12
(2013
).21.
Y.
Kodama
, “Young diagrams and N solitons solutions to the KP equation
,” J. Phys. A: Math. Gen.
37
, 11169
–11190
(2004
).22.
G.
Latham
, “Solutions of the Kadomtsev-Petviaschvili equation associated to rank-three commuting differential operators over a singular elliptic curve
,” Physica D
41
, 55
–66
(1990
).23.
V. X.
Ma
, “Lump solutions to the KP equation
,” Phys. Lett. A
379
, 1975
(2015
).24.
B. B.
Kadomtsev
and V. I.
Petviashvili
, “On the stability of solitary waves in weakly dispersing media
,” Sov. Phys. Dokl.
15
(6
), 539
–541
(1970
).25.
I.
Krichever
, “Rational solutions of the Kadomtsev-Petviashvili equation and integrable systems of N particules on a line
,” Funct. Anal. Appl.
12
(1
), 59
–61
(1978
).26.
S. V.
Manakov
, V. E.
Zakharov
, L. A.
Bordag
, and V. B.
Matveev
, “Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction
,” Phys. Lett. A
63
(3
), 205
–206
(1977
).27.
V. B.
Matveev
, “Darboux transformation and explicit solutions of the Kadomtsev-Petviaschvili equation depending on functional parameters
,” Lett. Math. Phys.
3
, 213
–216
(1979
).28.
W.
Oevel
, “Darboux theorems and wronskian formulas for integrable suystems I: Constrained KP flows
,” Physica A
195
, 533
–576
(1993
).29.
W.
Oevel
and W.
Stramp
, “Wronskian solutions of the constrained KP hierarchy
,” J. Math. Phys.
37
, 6213
–6219
(1996
).30.
D. E.
Pelinovsky
and Y. A.
Stepanyants
, “New multisolitons of the Kadomtsev-Petviashvili equation
,” JETP Lett.
57
, 24
–28
(1993
).31.
D. E.
Pelinovsky
, “Rational solutions of the Kadomtsev-Petviashvili hierarchy and the dynamics of their poles. I. New form of a general rational solution
,” J. Math. Phys.
35
, 5820
–5830
(1994
).32.
D. E.
Pelinovsky
, Y. A.
Stepanyants
, and Y. A.
Kivshar
, “Self-focusing of plane dark solitons in nonlinear defocusing media
,” Phys. Rev. E
51
, 5016
–5026
(1995
).33.
J.
Satsuma
and M. J.
Ablowitz
, “Two-dimensional lumps in nonlinear dispersive systems
,” J. Math. Phys.
20
, 1496
–1503
(1979
).34.
A. P.
Veselov
, “Rational solutions of the Kadomtsev-Petviaschvili equation and Hamiltonian systems
,” Russian Mathematical Surveys
35
(1
), 239
–240
(1980
).35.
J.
Weiss
, “Modified equation, rational solutions and the Painlevé property for the Kadomtsev-Petviaschvili and Hitrota-Satsuma equation
,” J. Math. Phys.
26
, 2174
(1985
).36.
T.
Xu
, F. W.
Sun
, Y.
Zhang
, and J.
Li
, “Multi-component wronskian solution to the Kadomtsev-Petviasvili equation
,” Comput. Math. Math. Phys.
54
, 97
–113
(2014
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.