We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.

1.
R.
Hojman
,
S.
Hojman
, and
J.
Sheinbaum
,
Phys. Rev. D
28
,
1333
(
1983
).
3.
R.
Hojman
and
J.
Zanelli
,
Phys. Rev. D
35
,
3825
(
1987
).
4.
B. L.
Foster
,
Proc. R. Soc. London, Ser. A
423
,
443
(
1989
).
5.
C.
Udrişte
and
A.
Pitea
,
Balk. J. Geom. Appl.
16
,
174
185
(
2011
).
6.
B. M.
Barker
and
R. F.
O’Connell
,
Phys. Lett. A
78
,
231
232
(
1980
).
7.
H.
Tesser
,
J. Math. Phys.
13
,
796
799
(
1972
).
8.
P.
Popescu
,
J. Geom. Phys.
77
,
113
(
2014
); e-print arXiv: 1212.4873v2 [math-ph].
9.
P.
Popescu
and
M.
Popescu
,
Balk. J. Geom. Appl.
17
,
82
91
(
2012
).
10.
F. A. E.
Pirani
and
A.
Schild
,
Phys. Rev.
79
,
986
(
1950
).
11.
R.
Cordero
,
A.
Molgado
, and
E.
Rojas
,
Phys. Rev. D
79
,
024024
(
2009
).
12.
R.
Cordero
,
A.
Molgado
, and
E.
Rojas
,
Class. Quant. Grav.
28
,
065010
(
2011
).
13.
R.
Cordero
,
M.
Cruz
,
A.
Molgado
, and
E.
Rojas
,
Class. Quant. Grav.
29
,
175010
(
2012
).
14.
R.
Cordero
,
M.
Cruz
,
A.
Molgado
, and
E.
Rojas
,
Gen. Relativ. Gravitation
46
,
1761
(
2014
).
15.
S. K.
Dutt
and
M.
Dresden
, preprint ITP-SB-86-32 (
1986
).
16.
R. N.
Ghalati
,
N.
Kiriushcheva
, and
S. V.
Kuzmin
,
Mod. Phys. Lett. A
22
,
17
28
(
2007
); e-print arXiv: hep-th/0605193v3.
17.
B.
Paul
,
Phys. Rev. D
87
,
045003
(2013); e-print arXiv: 1212.5902v2 [hep-th].
18.
R.
Banerjee
,
P.
Mukherjee
, and
B.
Paul
,
Phys. Rev. D
89
,
043508
(
2014
); e-print arXiv: 1307.4920v2 [gr-qc].
19.
R.
Hojman
and
J.
Zanelli
,
Nuovo Cimento
94
,
87
(
1986
).
20.
M.
De León
and
J. C.
Marrero
, “
Degenerate time-dependent Lagrangians of second order: The fourth order differential equation problem
,” in
Proceeding of the 5th International Conference on Differential Geometry and its Applications, Opava, Czechoslovakia, August 1992
, edited by
O.
Kowalski
and
D.
Krupka
(
Silesian University at Opava, Czech Republic
,
1993
), pp.
497
508
.
21.
F.
Pardo
,
J. Math. Phys.
30
,
2854
(
1989
).
22.
K.
Andrzejewski
,
J.
Gonera
, and
P.
Maślanka
, “
A note on the Hamiltonian formalism for higher-derivative theories
,” e-print arXiv: 0710.2976v1 [hep-th].
23.
K.
Kondo
,
Tensor N. S.
14
,
191
215
(
1963
).
24.
R.
Miron
,
The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics
(
Kluwer Academic Publishers
,
1997
).
25.
R.
Miron
,
The Geometry of Higher-Order Hamilton Spaces: Applications to Hamiltonian Mechanics
(
Kluwer Academic Publishers
,
2003
).
26.
R.
Miron
,
Int. J. Theor. Phys.
34
,
1123
1146
(
1995
).
27.
R.
Ya Matsyuk
,
J. Differ. Geom. Appl.
29
,
S149
S155
(2011); e-print arXiv: 1101.5384v2 [math.DG].
28.
X.
Gràcia
,
J. M.
Pons
, and
N.
Román-Roy
,
J. Phys. A: Math. Gen.
25
,
1989
2004
(
1989
).
29.
X.
Gràcia
,
J. M.
Pons
, and
N.
Román-Roy
,
J. Math. Phys.
32
,
2744
(
1992
).
30.
M.
de León
and
D.
Martín de Diego
,
J. Math. Phys.
36
,
4138
(
1995
).
31.
R.
Capovilla
and
J.
Guven
,
Phys. Rev. D
51
,
6736
-
6743
(
1995
).
32.
J.
Govaerts
,
Int. J. Mod. Phys. A
5
,
3625
3640
(
1990
).
33.
T.-j.
Chen
,
M.
Fasiello
,
E. A.
Lim
, and
A. J.
Tolley
,
J. Cosmol. Astrophys. Phys.
02
,
042
(
2013
); e-print arXiv: 1209.0583v4 [hep-th].
34.
V. V.
Nesterenko
,
Phys. Rev. D
75
,
087703
(
2007
); e-print arXiv: hep-th/0612265v2.
35.
N. G.
Stephen
,
J. Sound Vib.
310
,
729
739
(
2008
).
37.
L.
Querella
, Ph.D. thesis,
Université de Liége, FacultĆ des sciences
,
1998
; e-print arXiv: gr-qc/9902044v1.
38.
A.
Davidson
and
D.
Karasik
,
Mod. Phys. Lett. A
13
,
2187
2192
(
1998
);
A.
Davidson
and
D.
Karasik
,
Phys. Rev. D
67
,
064012
(
2003
).
39.
M.
Ostrogradski
,
Mem. Ac. St. Petersbg.
V1
,
385
(
1850
).
40.
V. V.
Nesterenko
,
J. Phys. A
22
,
1673
(
1989
).
41.
P. A. M.
Dirac
,
Lectures on Quantum Mechanics
(
Dover Publications
,
Mineola, New York
,
2001
).
42.
M.
Henneaux
and
C.
Teitelboim
,
Quantization of Gauge Systems
(
Princeton University Press, Princeton
,
New Jersey
,
1992
).
43.
H.
Rothe
and
K.
Rothe
,
Classical and Quantum Dynamics of Constrained Hamiltonian Systems
,
World Scientific Lectures Notes in Physics
Vol.
81
(
World Scientific
,
2010
).
44.
V. V.
Nesterenko
,
Phys. Lett. B
327
,
50
(
1994
).
47.
J.
Lukierski
,
P.
Stichel
, and
W.
Zakrzewski
,
Ann. Phys.
260
,
224
(
1997
); e-print arXiv: hep-th/9612017v2.
48.
K.
Andrzejewski
,
J.
Gonera
,
P.
Machalski
, and
P.
Maślanka
,
Phys. Rev. D
82
,
045008
(
2010
); e-print arXiv: 1005.3941v4 [hep-th].
49.
P. M.
Zhang
,
P. A.
Horvathy
,
K.
Andrzejewski
,
J.
Gonera
, and
P.
Kosiński
,
Ann. Phys.
333
,
335
359
(
2012
); e-print arXiv: 1207.2875v3 [hep-th].
50.
C. S.
Acatrinei
,
J. Phys. A: Math. Theor.
40
,
F929
F934
(
2007
); e-print arXiv: 0708.4351 [hep-th].
51.
P. A.
Horvathy
and
M. S.
Plyushchay
,
J. High Energy Phys.
0206
,
033
(2002); e-print arXiv: hep-th/0201228.
52.
C.
Udrişte
, in
Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras 1998
(
Balkan Society of Geometers
,
1999
), pp.
161
168
.
53.
T.
Otsuki
,
Math. J. Okayama Univ.
32
,
227
242
(
1990
).
54.
P. N. V.
Tu
,
Introductory Optimization Dynamics
(
Springer-Verlag
,
1991
).
55.
M.
De León
and
P. R.
Rodrigues
,
Generalized Classical Mechanics and Field Theory: A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives
(
Elsevier Science Publishers
,
1985
).
56.
R.
Capovilla
,
J.
Guven
, and
E.
Rojas
,
Class. Quantum Gravity
21
,
5563
5586
(
2004
); e-print arXiv: hep-th/0404178.
57.
In any N-dimensional manifold with a non-degenerate metric gμν that is used to lower and raise indexes, for covariant theories defined in an immersed (p + 1)-dimensional surface, at any point of the surface the following decomposition holds
gμν=Hμν+μν,
where Hμν=gabeμaeνb is the projection tensor of rank (p + 1) on the surface, gab is the induced metric, and eμa denotes the tangent vectors to the surface. Further, ⊥μν = nμ(s)nν(s) is the complementary projector tensor of rank (Np − 1), orthogonal to the surface.
58.
M.
Önder
and
R. M.
Tucker
,
J. Phys. A. Math. Gen.
21
,
3423
(
1988
).
59.
H. V.
Craig
,
Am. J. Math.
57
,
457
462
(
1935
).
60.
J. L.
Synge
,
Am. J. Math.
57
,
679
691
(
1935
).
You do not currently have access to this content.