Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.
REFERENCES
1.
J. E.
Marsden
, Lectures on Mechanics
(Cambridge University Press, Cambridge
, 1992
).2.
A.
Fässler
, D. T.
Khoa
, M.
Grigorescu
, and R.
Nojarov
, “Low-lying magnetic dipole excitations in actinide nuclei
,” Phys. Rev. Lett.
65
, 2978
(1990
).3.
M.
Grigorescu
, D.
Rompf
, and W.
Scheid
, “Dynamical effects of deformation in the coupled two-rotor system
,” Phys. Rev. C
57
, 1218
(1998
).4.
M.
Grigorescu
, “Low-lying isovector monopole resonances
,” J. Phys. G: Nucl. Part. Phys.
16
, 417
(1990
).5.
M.
Grigorescu
, “Structure effects of the two-protons two-neutrons correlations
,” Rev. Roum. Phys.
37
, 107
(1992
).6.
7.
A.
Einstein
and O.
Stern
, “Einige argumente für die annahme einer molekular agitation beim absoluten nullpunkt
,” Ann. Phys.
40
, 551
(1913
).8.
J.
Śniatycki
, Geometric Quantization and Quantum Mechanics
(Springer
, New York
, 1980
), p. 21
.9.
N. E.
Hurt
, Geometric Quantization in Action: Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory
(Reidel, Dordrecht
, 1980
), p. 69
.10.
C. T.
Prieto
, “Quantization and spectral geometry of a rigid body in a magnetic monopole field
,” Differ. Geom. Appl.
14
, 157
(2001
).11.
C. P.
Malta
, T. S.
Marshall
, and E.
Santos
, “Wigner density of a rigid rotator
,” Phys. Rev. E
55
, 2551
(1997
).12.
E. P.
Wigner
, “On the quantum correction for thermodynamic equilibrium
,” Phys. Rev.
40
, 749
(1932
).13.
T.
Fischer
, C.
Gneiting
, and K.
Hornberger
, “Wigner function for the orientation state
,” New J. Phys.
15
, 063004
(2013
).14.
M.
Grigorescu
, “Classical probability waves
,” Physica A
387
, 6497
(2008
).15.
16.
A.
Sommerfeld
, Thermodynamik und Statistik
(Akademische Verlagsgesellschaft, Leipzig
, 1962
).17.
F.
Hirzebruch
, Neue Topologische Methoden in der Algebraischen Geometrie
(Springer
, 1956
).18.
E. P.
Wigner
, Group Theory and its Applications to the Quantum Mechanics of the Atomic Spectra
(Academic Press, New York
, 1959
).19.
S. M.
Barnett
and D. T.
Pegg
, “Quantum theory of rotation angles
,” Phys. Rev. A
41
, 3427
(1990
).20.
D.
Loss
and K.
Müllen
, “Commutation relations for periodic operators
,” J. Phys. A: Math. Gen.
25
, L235
(1992
).21.
S. T.
Ali
, H.
Führ
, and A. E.
Krasowska
, “Plancherel inversion as unified approach to wavelet transforms and Wigner functions
,” Ann. Henri Poincaré
4
, 1015
(2003
).22.
M.
Naïmark
and A.
Stern
, Théorie des Représentations des Groupes
(Éditions Mir
, Moscow
, 1979
), p. 341
.23.
J. J.
Slawianowski
, V.
Kovalchuck
, A.
Martens
, B.
Golubowska
, and E.
Rozko
, “Quasiclassical and quantum systems of angular momentum. Part III. Group algebra 𝔰u(2), quantum angular momentum and quasiclassical asymptotics
,” J. Geom. Symmetry Phys.
23
, 59
(2011
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.