Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.

1.
J. E.
Marsden
,
Lectures on Mechanics
(
Cambridge University Press, Cambridge
,
1992
).
2.
A.
Fässler
,
D. T.
Khoa
,
M.
Grigorescu
, and
R.
Nojarov
, “
Low-lying magnetic dipole excitations in actinide nuclei
,”
Phys. Rev. Lett.
65
,
2978
(
1990
).
3.
M.
Grigorescu
,
D.
Rompf
, and
W.
Scheid
, “
Dynamical effects of deformation in the coupled two-rotor system
,”
Phys. Rev. C
57
,
1218
(
1998
).
4.
M.
Grigorescu
, “
Low-lying isovector monopole resonances
,”
J. Phys. G: Nucl. Part. Phys.
16
,
417
(
1990
).
5.
M.
Grigorescu
, “
Structure effects of the two-protons two-neutrons correlations
,”
Rev. Roum. Phys.
37
,
107
(
1992
).
6.
L.
Landau
and
E.
Lifchitz
,
Physique Statistique
(
Éditions Mir
,
Moscow
,
1967
).
7.
A.
Einstein
and
O.
Stern
, “
Einige argumente für die annahme einer molekular agitation beim absoluten nullpunkt
,”
Ann. Phys.
40
,
551
(
1913
).
8.
J.
Śniatycki
,
Geometric Quantization and Quantum Mechanics
(
Springer
,
New York
,
1980
), p.
21
.
9.
N. E.
Hurt
,
Geometric Quantization in Action: Applications of Harmonic Analysis in Quantum Statistical Mechanics and Quantum Field Theory
(
Reidel, Dordrecht
,
1980
), p.
69
.
10.
C. T.
Prieto
, “
Quantization and spectral geometry of a rigid body in a magnetic monopole field
,”
Differ. Geom. Appl.
14
,
157
(
2001
).
11.
C. P.
Malta
,
T. S.
Marshall
, and
E.
Santos
, “
Wigner density of a rigid rotator
,”
Phys. Rev. E
55
,
2551
(
1997
).
12.
E. P.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
(
1932
).
13.
T.
Fischer
,
C.
Gneiting
, and
K.
Hornberger
, “
Wigner function for the orientation state
,”
New J. Phys.
15
,
063004
(
2013
).
14.
M.
Grigorescu
, “
Classical probability waves
,”
Physica A
387
,
6497
(
2008
).
15.
M.
Grigorescu
, “
Coherent distributions and quantization
,” e-print arXiv:1410.1338 (2014).
16.
A.
Sommerfeld
,
Thermodynamik und Statistik
(
Akademische Verlagsgesellschaft, Leipzig
,
1962
).
17.
F.
Hirzebruch
,
Neue Topologische Methoden in der Algebraischen Geometrie
(
Springer
,
1956
).
18.
E. P.
Wigner
,
Group Theory and its Applications to the Quantum Mechanics of the Atomic Spectra
(
Academic Press, New York
,
1959
).
19.
S. M.
Barnett
and
D. T.
Pegg
, “
Quantum theory of rotation angles
,”
Phys. Rev. A
41
,
3427
(
1990
).
20.
D.
Loss
and
K.
Müllen
, “
Commutation relations for periodic operators
,”
J. Phys. A: Math. Gen.
25
,
L235
(
1992
).
21.
S. T.
Ali
,
H.
Führ
, and
A. E.
Krasowska
, “
Plancherel inversion as unified approach to wavelet transforms and Wigner functions
,”
Ann. Henri Poincaré
4
,
1015
(
2003
).
22.
M.
Naïmark
and
A.
Stern
,
Théorie des Représentations des Groupes
(
Éditions Mir
,
Moscow
,
1979
), p.
341
.
23.
J. J.
Slawianowski
,
V.
Kovalchuck
,
A.
Martens
,
B.
Golubowska
, and
E.
Rozko
, “
Quasiclassical and quantum systems of angular momentum. Part III. Group algebra 𝔰u(2), quantum angular momentum and quasiclassical asymptotics
,”
J. Geom. Symmetry Phys.
23
,
59
(
2011
).
You do not currently have access to this content.