The object of the present paper is to study spacetimes admitting pseudo-projective curvature tensor. At first we prove that a pseudo-projectively flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein’s field equation with cosmological constant is covariant constant. Next, we prove that if the perfect fluid spacetime with vanishing pseudo-projective curvature tensor obeys Einstein’s field equation without cosmological constant, then the spacetime has constant energy density and isotropic pressure, and the perfect fluid always behaves as a cosmological constant and also such a spacetime is infinitesimally spatially isotropic relative to the unit timelike vector field U. Moreover, it is shown that a pseudo-projectively flat spacetime satisfying Einstein’s equation without cosmological constant for a purely electromagnetic distribution is an Euclidean space. We also prove that under certain conditions a perfect fluid spacetime with divergence-free pseudo-projective curvature is a Robertson-Walker spacetime and the possible local cosmological structure of such a spacetime is of type I, D or O. We also study dust-like fluid spacetime with vanishing pseudo-projective curvature tensor.

1.
Ahsan
,
Z.
and
Siddiqui
,
S. A.
, “
Concircular curvature tensor and fluid spacetimes
,”
Int. J. Theor. Phys.
48
,
3202
-
3212
(
2009
).
2.
Amendola
,
L.
and
Tsujikawa
,
S.
,
Dark Energy: Theory and Observations
(
Cambridge University Press
,
Cambridge
,
2010
).
3.
Arslan
,
K.
 et al., “
On generalized Robertson-Walker spacetimes satisfying some curvature condition
,”
Turk. J. Math.
38
,
353
-
373
(
2014
).
4.
Barnes
,
A.
,
Gen. Relativ. Gravitation
4
,
105
-
129
(
1973
).
5.
Chaki
,
M. C.
and
Roy
,
S.
, “
Space-times with covariant-constant energy-momentum tensor
,”
Int. J. Theor. Phys.
35
,
1027
-
1032
(
1996
).
6.
Chakraborty
,
S.
,
Mazumder
,
N.
, and
Biswas
,
R.
, “
Cosmological evolution across phantom crossing and the nature of the horizon
,”
Astrophys. Space Sci.
334
,
183
-
186
(
2011
).
7.
De
,
U. C.
and
Velimirović
,
L.
, “
Spacetimes with semisymmetric energy momentum tensor
,”
Int. J. Theor. Phys.
54
,
1779
-
1783
(
2015
).
8.
Doǧru
,
Y.
, “
Hypersurfaces satisfying some curvature conditions on pseudo-projective curvature tensor in the semi-Euclidean space
,”
Differ. Geom. Dyn. Syst.
2
,
99
-
105
(
2014
).
9.
Duggal
,
K. L.
, “
Curvature collineations and conservation laws of general relativity
,” in
Presented at the Canadian Conference on General Relativity and Relativistic Astro-Physics
(
Halifax
,
Canada
,
1985
).
10.
Duggal
,
K. L.
, “
Curvature inheritance symmetry in Riemannian spaces with applications to fluid spacetimes
,”
J. Math. Phys.
33
(
9
),
2989
-
2997
(
1992
).
11.
Ferus
,
D.
,
Global Differential Geometry and Global Analysis
(
Springer Verlag
,
New York
,
1981
).
12.
Güler
,
S.
and
Demirbaǧ
,
S. A.
, “
A study of generalized quasi-Einstein spacetimes with applications in general relativity
,”
Int. J. Theor. Phys.
55
,
548
-
562
(
2016
).
13.
Guilfoyle
,
B. S.
and
Nolan
,
B. C.
, “
Yang’s gravitational theory
,”
Gen. Relativ. Gravitation
30
(
3
),
473
-
495
(
1998
).
14.
Hervik
,
S.
,
Ortaggio
,
M.
, and
Wylleman
,
L.
, “
Minimal tensors and purely electric and magnetic spacetimes of arbitrary dimensions
,”
Classical Quantum Gravity
30
,
165014
(
2013
).
15.
Jaiswal
,
J. P.
and
Ojha
,
R. H.
, “
On weak pseudo-projective symmetric manifilds, Differ
,”
Geom. Dyn. Syst.
12
,
83
-
94
(
2010
).
16.
Karchar
,
H.
, “
Infinitesimal characterization of Friedmann universe
,”
Arch. Math. Basel
38
,
58
-
64
(
1992
).
17.
Katzin
,
G. H.
,
Levine
,
J.
, and
Davis
,
W. R.
, “
Curvature collineations: A fundamental symmetry property of the spacetime of general relativity defined by the vanishing Lie derivative of the Riemannian curvature tensor
,”
J. Math. Phys.
10
,
617
-
629
(
1969
).
18.
Kobayashi
,
S.
and
Nomizu
,
K.
,
Foundations of Differential Geometry
(
Inter-Science
,
New York
,
1963
), Vol.
1
.
19.
Mantica
,
C. A.
and
Suh
,
Y. J.
, “
Pseudo Z symmetric spacetimes
,”
J. Math. Phys.
55
,
042502
(
2014
).
20.
Mantica
,
C. A.
and
Suh
,
Y. J.
, “
Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors
,”
Int. J. Geom. Methods Mod. Phys.
9
,
1250004
(
2012
).
21.
Mantica
,
C. A.
and
Suh
,
Y. J.
, “
Recurrent Z-forms on Riemannian and Kaeheler manifolds
,”
Int. J. Geom. Methods Mod. Phys.
9
,
1250059
(
2012
).
22.
Mantica
,
C. A.
and
Suh
,
Y. J.
, “
Pseudo Z symmetric spacetimes with divergence-free Wyel tensor and pp-waves
,”
Int. J. Geom. Methods Mod. Phys.
13
,
1650015
(
2016
).
23.
Mantica
,
C. A.
and
Molinari
,
L. G.
, “
Weyl compatible tensors
,”
Int. J. Geom. Methods Mod. Phys.
11
,
1450070
(
2014
).
24.
Mantica
,
C. A.
and
Molinari
,
L. G.
, “
Extended Derdziński-Shen theorem for curvature tensors
,”
Colloq. Math.
128/1
,
1
-
6
(
2012
).
25.
Mantica
,
C. A.
and
Molinari
,
L. G.
, “
Riemann compatible tensors
,”
Colloq. Math.
128/2
,
197
-
210
(
2012
).
26.
Mantica
,
C. A.
,
Molinari
,
L. G.
, and
De
,
U. C.
, “
A condition for a perfect fluid spacetime to be a generalized Robertson-Walker spacetime
,”
J. Math. Phys.
57
,
022508
(
2016
).
27.
Mantica
,
C. A.
and
Molinari
,
L. G.
, “
Weakly Z symmetric manifolds
,”
Acta Math. Hung.
135
,
80
-
96
(
2012
).
28.
Nagaraja
,
H. G.
and
Somashekhara
,
G.
, “
On pseudo-projective curvature tensor in Sasakian manifolds
,”
Int. J. Contemp. Math. Sci.
6
,
1319
-
1328
(
2011
).
29.
Narain
,
D.
,
Prakash
,
A.
, and
Prasad
,
B.
, “
A pseudo-projective curvature tensor on a Lorentzian para-Sasakian manifold
,”
An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.)
55
,
275
-
284
(
2009
), Tomul LV.
30.
Narlikar
,
J. V.
,
General Relativity and Gravitation
(
The Macmillan Company of India
,
1978
).
31.
O’Neill
,
B.
,
Semi-Riemannian Geometry
(
Academic Press, Inc.
,
NY
,
1983
).
32.
Prasad
,
B.
, “
A pseudo-projective curvature tensor on a Riemannian manifolds
,”
Bull. Cal. Math. Soc.
94/3
,
163
-
166
(
2002
).
33.
Roy Chaudhuri
,
A. K.
,
Benerjee
,
S.
, and
Benerjee
,
A.
,
General Relativity, Astrophysics and Cosmology
(
Springer Verlag
,
New York
,
1992
).
34.
Sach
,
R. K.
and
Hu
,
W.
,
General Relativity for Mathematician
(
Springer Verlag
,
New York
,
1977
).
35.
Shepley
,
L. C.
and
Taub
,
A. H.
, “
Spacetime containing perfect fluids and having a vanishing conformal divergence
,”
Commun. Math. Phys.
5
,
237
-
256
(
1967
).
36.
Srivastava
,
S. K.
,
General Ralativity and Cosmology
(
Prentice-Hall of India Private Limited
,
New Delhi
,
2008
).
37.
Stephani
,
H.
,
General Relativity-An Introduction to the Theory of Gravitational Field
(
Cambridge University Press
,
Cambridge
,
1982
).
38.
Stephani
,
H.
,
Kramer
,
D.
,
MacCallum
,
M.
,
Hoenselaers
,
C.
, and
Herlt
,
E.
,
Exact Solutions of Einstein’s Field Equations
, 2nd ed.
Cambridge Monographs on Mathematical Physics
(
Cambridge University Press
,
Cambridge
,
2003
).
39.
Zengin
,
F. O.
, “
M-projectively flat spacetimes
,”
Math. Rep.
4
,
363
-
370
(
2012
).
You do not currently have access to this content.