In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the authors, who introduced the definition of Fisher information tensor, we will show how its antisymmetric part is the pullback of the natural Kostant–Kirillov–Souriau symplectic form along some natural diffeomorphism. In order to do this, we will need to understand the symmetric logarithmic derivative as a proper 1-form, settling the issues about its very definition and explicit computation. Moreover, the fibration of co-adjoint orbits, seen as spaces of mixed states, is also discussed.

1.
E.
Ercolessi
,
G.
Marmo
, and
G.
Morandi
, “
From the equations of motion to the canonical commutation relations
,”
Riv. Nuovo Cimento
33
,
401
(
2010
).
2.
Y.
Aharonov
and
D.
Bohm
, “
Significance of electromagnetic potentials in quantum theory
,”
Phys. Rev.
115
,
485
(
1959
).
3.
I.
Bengtsson
and
K.
Zyckowski
,
Geometry of Quantum States: An Introduction to Quantum Entanglement
(
Cambridge University Press
,
2006
).
4.
M.
Walter
,
B.
Doran
,
D.
Gross
, and
M.
Christandl
, “
Entanglement polytopes
,”
Science
340
,
1205
(
2013
).
5.
D.
Petz
, “
Monotone metrics on matrix spaces
,”
Linear Algebra Appl.
244
,
81
(
1996
).
6.
K.
Zyczkowski
and
W.
Slomczynski
, “
Monge metric on the sphere and geometry of quantum states
,”
J. Phys. A: Math. Gen.
34
,
6689
(
2001
).
7.
B. M.
Escher
,
R. L.
de Matos Filho
, and
L.
Davidovich
, “
General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology
,”
Nat. Phys.
7
,
406
(
2011
).
8.
D. C.
Brody
and
L. P.
Hughston
, “
Geometric quantum mechanics
,”
J. Geom. Phys.
38
,
19
(
2001
).
9.
P.
Facchi
,
R.
Kulkarni
,
V. I.
Man’ko
,
G.
Marmo
,
E. C. G.
Sudarshan
, and
F.
Ventriglia
, “
Classical and quantum Fisher information in the geometrical formulation of quantum mechanics
,”
Phys. Lett. A
374
,
4801
(
2010
).
10.
S. L.
Braunstein
and
Caves
, “
Statistical distance and the geometry of quantum states
,”
Phys. Rev. Lett.
72
,
3439
(
1994
).
11.
J.
Burbea
and
C. R.
Rao
, “
Differential metrics in probability spaces
,”
Prob. Math. Stat.
3
,
241
(
1984
).
12.
O. E.
Barndorff-Nielsen
and
R. D.
Gill
, “
Fisher information in quantum statistics
,”
J. Phys. A: Math. Gen.
33
,
4481
(
2000
).
13.
A.
Luati
, “
A note on Fisher-Helstrom information inequality in pure state models
,”
Indian J. Stat.
70-A
,
25
(
2008
).
14.
A.
Luati
, “
Maximum Fisher information in mixed state quantum systems
,”
Ann. Stat.
32
,
1770
(
2004
).
15.
E.
Ercolessi
and
M.
Schiavina
, “
Geometry of mixed states for a q-bit and the quantum Fisher information tensor
,”
J. Phys. A: Math. Theor.
45
,
365303
(
2012
).
16.
E.
Ercolessi
and
M.
Schiavina
, “
Symmetric logarithmic derivative for general n-level systems and the quantum Fisher information tensor for three-level systems
,”
Phys. Lett. A
377
,
1996
(
2013
).
17.
S.
Chaturvedi
,
E.
Ercolessi
,
G.
Marmo
,
G.
Morandi
,
N.
Mukunda
, and
R.
Simon
, “
Geometric phase for mixed states: A differential geometric approach
,”
Eur. Phys. J. C
35
,
413
(
2004
).
18.
V.
Guillemin
,
E.
Lerman
, and
S.
Sternberg
,
Symplectic Fibrations and Multiplicity Diagrams
(
Cambridge University Press
,
2009
).
19.
V.
Guillemin
and
S.
Sternberg
, “
Geometric quantization and multiplicities of group representations
,”
Invent. Math.
67
,
515
(
1982
).
20.
B.
Kostant
, “
Quantization and unitary representations
,” in
Modern Analysis and Applications
,
Lecture Notes in Mathematics
(
Springer
,
1970
), Vol.
170
, p.
87
.
21.
A. A.
Kirillov
,
Lectures on the orbit method
(
Graduate Studies in Mathematics
,
2004
), Vol.
64
.
22.
J.
Grabowski
,
M.
Kus̀
, and
G.
Marmo
, “
Geometry of quantum systems: Density states and entanglement
,”
J. Phys. A: Math. Gen.
38
,
10217
(
2005
).
23.
J.
Preskill
,
Quantum Information and Computation
,
Lecture Notes for Physics
Vol.
229
(
CreateSpace Independent Publishing Platform
,
2015
).
24.
S. J.
Akhtarshenas
, “
An explicit computation of the Bures metric over the space of N-dimensional density matrices
,”
J. Phys. A: Math. Theor.
40
,
11333
(
2007
).
25.
D. C.
Brody
, “
Information geometry of density matrices and state estimation
,”
J. Phys. A: Math. Theor.
44
,
252002
(
2011
).
26.
C.
Godbillon
,
Elements de Topologie Algebrique
(
Hermann editors
,
1998
).
27.
M.
Reeder
, “
On the cohomology of compact Lie groups
,”
L’Enseignement Math.
41
,
181
(
1995
).
28.
P. M.
Skerrit
, “
Geometric quantization and foliation reduction
,” Ph.D. dissertation,
California Institute of Technology
(
2013
), http://resolver.caltech.edu/CaltechTHESIS:06172013-011507797.
29.
R. F.
Picken
, “
The Duistermaat-Heckman integration formula on flag manifolds
,”
J. Math. Phys.
31
,
616
(
1990
).
30.
W. Y.
Hsiang
,
Lectures on Lie Groups
,
Series on University Mathematics
(
World Scientific
,
1998
), Vol.
2
.
31.

Notice the factor of 2 in (36) to compensate the antisymmetrisation.

You do not currently have access to this content.