Quantum Stein’s lemma is a cornerstone of quantum statistics and concerns the problem of correctly identifying a quantum state, given the knowledge that it is one of two specific states (ρ or σ). It was originally derived in the asymptotic i.i.d. setting, in which arbitrarily many (say, n) identical copies of the state (ρn or σn) are considered to be available. In this setting, the lemma states that, for any given upper bound on the probability αn of erroneously inferring the state to be σ, the probability βn of erroneously inferring the state to be ρ decays exponentially in n, with the rate of decay converging to the relative entropy of the two states. The second order asymptotics for quantum hypothesis testing, which establishes the speed of convergence of this rate of decay to its limiting value, was derived in the i.i.d. setting independently by Tomamichel and Hayashi, and Li. We extend this result to settings beyond i.i.d. Examples of these include Gibbs states of quantum spin systems (with finite-range, translation-invariant interactions) at high temperatures, and quasi-free states of fermionic lattice gases.

1.
Araki
,
H.
, “
Relative entropy of states of von Neumann algebras
,”
Publ. Res. Inst. Math. Sci.
11
(
3
),
809
833
(1975).
2.
Araki
,
H.
, “
Relative entropy for states of von Neumann algebras. II
,”
Publ. Res. Inst. Math. Sci.
13
(
1
),
173
192
(1977).
3.
Open quantum systems. I
, edited by
S.
Attal
,
A.
Joye
, and
C.-A.
Pillet
,
Lecture Notes in Mathematics
Vol.
1880
(
Springer-Verlag
,
Berlin
,
2006
), The Hamiltonian approach, Lecture notes from the Summer School held in Grenoble, June 16–July 4, 2003.
4.
Audenaert
,
K. M. R.
,
Calsamiglia
,
J.
,
Muñoz Tapia
,
R.
,
Bagan
,
E.
,
Masanes
,
L.
,
Acin
,
A.
, and
Verstraete
,
F.
, “
Discriminating states: The quantum Chernoff bound
,”
Phys. Rev. Lett.
98
,
160501
(
2007
).
5.
Bhatia
,
R.
,
Matrix Analysis
,
Graduate Texts in Mathematics
Vol.
169
(
Springer-Verlag
,
New York
,
1997
).
6.
Billingsley
,
P.
,
Probability and Measure
, 3rd ed.
Wiley Series in Probability and Mathematical Statistics
(
John Wiley & Sons, Inc
,
New York
,
1995
), A Wiley-Interscience Publication.
7.
Bjelaković
,
I.
,
Deuschel
,
J.-D.
,
Krüger
,
T.
,
Seiler
,
R.
,
Siegmund-Schultze
,
R.
, and
Szkoła
,
A.
, “
Typical support and Sanov large deviations of correlated states
,”
Commun. Math. Phys.
279
(
2
),
559
584
(
2008
).
8.
Bjelakovic
,
I.
and
Siegmund-Schultze
,
R.
, “
An Ergodic theorem for the quantum relative entropy
,”
Commun. Math. Phys.
247
(
3
),
697
712
(
2004
).
9.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics. 1
, 2nd ed.
Texts and Monographs in Physics
(
Springer-Verlag
,
New York
,
1987
).
10.
Bratteli
,
O.
and
Robinson
,
D. W.
,
Operator Algebras and Quantum Statistical Mechanics. 2: Equilibrium States Models in Quantum Statistical Mechanics
, 2nd ed.
Texts and Monographs in Physics
(
Springer-Verlag
,
Berlin
,
1997
).
11.
Bryc
,
W.
, “
A remark on the connection between the large deviation principle and the central limit theorem
,”
Stat. Probab. Lett.
18
(
4
),
253
256
(
1993
).
12.
Dierckx
,
B.
,
Fannes
,
M.
, and
Pogorzelska
,
M.
, “
Fermionic quasifree states and maps in information theory
,”
J. Math. Phys.
49
(
3
),
032109
(
2008
).
13.
Feller
,
W.
,
An Introduction to Probability Theory and its Applications
, 2nd ed. (
John Wiley & Sons, Inc
,
New York-London-Sydney
,
1971
), Vol.
II
.
14.
Hayashi
,
M.
, “
Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding
,”
Phys. Rev. A
76
,
062301
(
2007
).
15.
Hayashi
,
M.
and
Tan
,
V. Y. F.
, “
Asymmetric evaluations of erasure and undetected error probabilities
,”
IEEE Trans. Inform. Theory
61
(
12
),
6560
6577
(
2015
).
16.
Hayashi
,
M.
and
Tomamichel
,
M.
, “
Correlation detection and an operational interpretation of the Rényi mutual information
” (e-print arXiv:1408.6894).
17.
Helstrom
,
C. W.
, “
Quantum detection and estimation theory
,”
J. Stat. Phys.
1
,
231
252
(
1969
).
18.
Hiai
,
F.
,
Mosonyi
,
M.
, and
Hayashi
,
M.
, “
Quantum hypothesis testing with group symmetry
,”
J. Math. Phys.
50
(
10
),
103304
(
2009
).
19.
Hiai
,
F.
,
Mosonyi
,
M.
, and
Ogawa
,
T.
, “
Large deviations and Chernoff bound for certain correlated states on a spin chain
,”
J. Math. Phys.
48
(
12
),
123301
(
2007
).
20.
Hiai
,
F.
,
Mosonyi
,
M.
, and
Ogawa
,
T.
, “
Error exponents in hypothesis testing for correlated states on a spin chain
,”
J. Math. Phys.
49
(
3
),
032112
(
2008
).
21.
Hiai
,
F.
and
Petz
,
D.
, “
The proper formula for relative entropy and its asymptotics in quantum probability
,”
Commun. Math. Phys.
143
(
1
),
99
114
(
1991
).
22.
Hiai
,
F.
and
Petz
,
D.
, “
Entropy Densities for Algebraic States
,”
J. Funct. Anal.
125
(
1
),
287
308
(
1994
).
23.
Holevo
,
A. S.
, “
An analogue of statistical decision theory and noncommutative probability theory
,”
Trudy Moskov. Mat. Obšč.
26
,
133
149
(
1972
).
24.
Jakšić
,
V.
,
Ogata
,
Y.
,
Pillet
,
C.-A.
, and
Seiringer
,
R.
, “
Quantum hypothesis testing and non-equilibrium statistical mechanics
,”
Rev. Math. Phys.
24
(
6
),
1230002
(
2012
).
25.
Jakšić
,
V.
,
Ogata
,
Y.
,
Pautrat
,
Y.
, and
Pillet
,
C.-A.
, “
Entropic fluctuations in quantum statistical mechanics. an introduction
,” in
Quantum Theory from Small to Large Scales
,
Lecture Notes of the Les Houches Summer School
Vol.
95
(
Oxford University Press
,
USA
,
2012
), pp.
213
410
.
26.
Kato
,
T.
,
Perturbation Theory for Linear Operators
,
Classics in Mathematics
(
Springer
,
1976
).
27.
Leditzky
,
F.
and
Datta
,
N.
, “
Second order asymptotics of visible mixed quantum source coding via universal codes
,” e-print arXiv:1407.6616 (
2014
).
28.
Li
,
K.
, “
Second-order asymptotics for quantum hypothesis testing
,”
Ann. Stat.
42
(
1
),
171
189
(
2014
).
29.
Mosonyi
,
M.
, “
Hypothesis testing for Gaussian states on bosonic lattices
,”
J. Math. Phys.
50
(
3
),
032105
(
2009
).
30.
Mosonyi
,
M.
,
Hiai
,
F.
,
Ogawa
,
T.
, and
Fannes
,
M.
, “
Asymptotic distinguishability measures for shift-invariant quasifree states of fermionic lattice systems
,”
J. Math. Phys.
49
(
7
),
072104
(
2008
).
31.
Nagaoka
,
H.
, “
The converse part of the theorem for quantum Hoeffding bound
” (e-print arXiv:quant-ph/0611289).
32.
Netočný
,
K.
and
Redig
,
F.
, “
Large deviations for quantum spin systems
,”
J. Stat. Phys.
117
(
3-4
),
521
547
(
2004
).
33.
Nussbaum
,
M.
and
Szkoła
,
A.
, “
The Chernoff lower bound for symmetric quantum hypothesis testing
,”
Ann. Stat.
37
(
2
),
1040
1057
(
2009
).
34.
Ogawa
,
T.
and
Hayashi
,
M.
, “
On error exponents in quantum hypothesis testing
,”
IEEE Trans. Inf. Theory
50
(
6
),
1368
1372
(
2004
).
35.
Ogawa
,
T.
and
Nagaoka
,
H.
, “
Strong converse and Stein’s lemma in quantum hypothesis testing
,”
IEEE Trans. Inf. Theory
46
(
7
),
2428
2433
(
2000
).
36.
Ohya
,
M.
and
Petz
,
D.
,
Quantum entropy and its use
,
Texts and Monographs in Physics
(
Springer-Verlag
,
Berlin
,
1993
).
37.
Petz
,
D.
, “
Quasientropies for states of a von Neumann algebra
,”
Publ. Res. Inst. Math. Sci.
21
(
4
),
787
800
(
1985
).
38.
Petz
,
D.
, “
Quasi-entropies for finite quantum systems
,”
Rep. Math. Phys.
23
(
1
),
57
65
(
1986
).
39.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics: Functional Analysis
, 2nd ed. (
Academic Press, Inc.
,
New York
,
1980
), Vol.
1
, Harcourt Brace Jovanovich, Publishers.
40.
Simon
,
B.
,
The Statistical Mechanics of Lattice Gases
,
Princeton Series in Physics
Vol.
I
(
Princeton University Press
,
Princeton, NJ
,
1993
).
41.
Strassen
,
V.
, “
Asymptotische Abschätzungen in Shannon’s informationstheorie
,” in
Transactions of the Third Prague Conference on Information Theory
(
1962
), pp.
689
723
.
42.
Tan
,
V. Y. F.
, “
Asymptotic estimates in information theory with non-vanishing error probabilities
,”
Found. Trends® Commun. Inf. Theory
11
(
1-2
),
1
184
(
2014
).
43.
Tomamichel
,
M.
and
Hayashi
,
M.
, “
A hierarchy of information quantities for finite block length analysis of quantum tasks
,”
IEEE Trans. Inf. Theory
59
(
11
),
7693
7710
(
2013
).
44.
Tomamichel
,
M.
and
Tan
,
V. Y.
, “
Second-order asymptotics for the classical capacity of image-additive quantum channels
,”
Commun. Math. Phys.
338
(
1
),
103
137
(
2015
).
45.
Watanabe
,
S.
and
Hayashi
,
M.
, “
Finite-length analysis on tail probability for Markov chain and application to simple hypothesis testing
,” Proceedings of 2014 International Symposium on Information Theory and its Applications, ISITA; e-print arXiv:1401.3801.
46.
Wilde
,
M. M.
,
Renes
,
J. M.
, and
Guha
,
S.
, “
Second-order coding rates for pure-loss bosonic channels
,”
Quantum Inf. Process.
15
(
3
),
1289
-
1308
(
2016
).
47.

We use the notation N(μ,σ2) to denote a normal distribution of mean μ and variance σ2.

48.

(−Xn) is known as the observed log-likelihood ratio or information content random variable and can be used to define the classical Neyman-Pearson tests.

You do not currently have access to this content.