We present a new decoding protocol to realize transmission of classical information through a quantum channel at asymptotically maximum capacity, achieving the Holevo bound and thus the optimal communication rate. At variance with previous proposals, our scheme recovers the message bit by bit, making use of a series of “yes-no” measurements, organized in bisection fashion, thus determining which codeword was sent in log2N steps, N being the number of codewords.

1.
M. M.
Wilde
,
Quantum Information Theory
(
Cambridge University Press
,
2013
).
2.
A. S.
Holevo
,
Quantum Systems, Channels, Information
(
de Gruyter Studies in Mathematical Physics
,
2012
).
3.
A. S.
Holevo
,
Probl. Peredachi Inf.
9
,
3
(
1973
)
[
A. S.
Holevo
,
Probl. Inf. Transm.
9
,
110
(
1973
) (in English)].
4.
A. S.
Holevo
,
IEEE Trans. Inf. Theory
44
,
269
(
1998
).
5.
B.
Schumacher
and
M. D.
Westmoreland
,
Phys. Rev. A
56
,
131
(
1997
);
P.
Hausladen
,
R.
Jozsa
,
B. W.
Schumacher
,
M.
Westmoreland
, and
W. K.
Wootters
,
Phys. Rev. A
54
,
1869
(
1996
).
[PubMed]
6.
P.
Hausladen
and
W. K.
Wooters
,
J. Mod. Opt.
41
,
2385
(
1994
).
7.
A. S.
Holevo
, e-print arXiv:quant-ph/9809023 (1998), see also Tamagawa University Research Review, no. 4.
8.
A.
Winter
,
IEEE Trans. Inf. Theory
45
,
2481
(
1999
).
9.
T.
Ogawa
, Ph.D. dissertation,
University of Electro-Communications
, Tokyo, Japan,
2000
(in Japanese);
T.
Ogawa
and
H.
Nagaoka
, in
Proceedings of the 2002 IEEE International Symposium on Information Theory, Lausanne, Switzerland
(
IEEE
,
New York
,
2002
), p.
73
;
T.
Ogawa
,
IEEE Trans. Inf. Theory
45
,
2486
(
1999
).
10.
T.
Ogawa
and
H.
Nagaoka
,
IEEE Trans. Inf. Theory
53
,
2261
(
2007
).
11.
M.
Hayashi
and
H.
Nagaoka
,
IEEE Trans. Inf. Theory
49
,
1753
(
2003
).
12.
M.
Hayashi
,
Commun. Math. Phys.
289
,
1087
(
2009
).
13.
S.
Lloyd
,
V.
Giovannetti
, and
L.
Maccone
,
Phys. Rev. Lett.
106
,
250501
(
2011
).
14.
V.
Giovannetti
,
S.
Lloyd
, and
L.
Maccone
,
Phys. Rev. A
85
,
012302
(
2012
).
15.
P.
Sen
, e-print arXiv:1109.0802v1 [quant-ph] (
2011
).
16.
M. B.
Hastings
,
Nat. Phys.
5
,
255
(
2008
).
17.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
Wiley
,
New York
,
1991
).
18.
19.
F.
Hiai
and
D.
Petz
,
Commun. Math. Phys.
143
,
99
(
1991
);
T.
Ogawa
and
H.
Nagaoka
,
IEEE Trans. Inf. Theory
46
,
2428
(
2000
).
20.
M. M.
Wilde
and
S.
Guha
, in
Proceedings of the 2012 International Symposium on Information Theory and its Applications
(
ISIT, Cambridge, MA, USA
,
2012
), pp.
303
-
307
.
21.
M. M.
Wilde
,
S.
Guha
,
S.-H.
Tan
, and
S.
Lloyd
, in
Proceedings of the 2012 IEEE International Symposium on Information Theory
(
ISIT
,
Cambridge, MA, USA
,
2012
), pp.
551
-
555
.
22.
A. S.
Holevo
and
R.
Werner
,
Phys. Rev. A
63
,
032312
(
2001
).
23.
V.
Giovannetti
,
S.
Guha
,
S.
Lloyd
,
L.
Maccone
,
J. H.
Shapiro
, and
H. P.
Yuen
,
Phys. Rev. Lett.
92
,
027902
(
2004
).
24.
M. M.
Wilde
and
S.
Guha
,
IEEE Trans. Inf. Theory
59
,
1175
(
2013
).
25.
E.
Arikan
,
IEEE Trans. Inf. Theory
55
,
3051
(
2009
).
26.
M. M.
Wilde
,
O.
Landon-Cardinal
, and
P.
Hayden
, in
8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)
(
Dagstuhl, Germany
,
2013
); e-print arXiv:1302.0398v1.
27.
M. M.
Wilde
and
J. M.
Renes
, in
Proceedings of the 2012 International Symposium on Information Theory and its Applications
,
Honolulu, Hawaii, USA
,
October 2012
; e-print arXiv:1203.5794.
28.
M. M.
Wilde
and
J. M.
Renes
, in
Proceedings of the 2012 International Symposium on Information Theory
,
Boston, Massachusetts, USA
,
July 2012
; e-print arXiv:1201.2906.
29.
J. M.
Renes
and
M. M.
Wilde
,
IEEE Trans. Inf. Theory
60
,
3090
(
2014
).
30.
M. M.
Wilde
,
Proc. R. Soc. A
469
,
2157
(
2013
).
31.

The code average in the first two properties can be removed when using a stronger notion of conditional typicality, which we do not state here for simplicity, since such average will appear quite naturally during calculations when making use of Shannon’s averaging trick.

32.
C. M.
Caves
and
P. D.
Drummond
,
Rev. Mod. Phys.
66
,
481
(
1994
).
33.
S. L.
Braunstein
and
P.
van Loock
,
Rev. Mod. Phys.
77
,
513
(
2005
).
34.
C.
Weedbrook
,
S.
Pirandola
,
R.
Garcia-Patron
,
N. J.
Cerf
,
T. C.
Ralph
,
J. H.
Shapiro
, and
S.
Lloyd
,
Rev. Mod. Phys.
84
,
621
(
2012
).
35.
A.
Winter
, Ph.D. thesis, Universitä Bielefled, 1999.
36.
A. S.
Holevo
and
V.
Giovannetti
,
Rep. Prog. Phys.
75
,
046001
(
2012
).
37.
R. G.
Gallager
,
Information Theory and Reliable Communication
(
John Wiley & Sons
,
1968
).
38.

An alternative computation of the error probability can be carried out by employing a generalization of Sen’s non-commutative union bound,30 obtaining the same condition on the single-step POVM for the optimality of the bisection protocol.

You do not currently have access to this content.