The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

1.
E. L.
Ince
,
Ordinary Differential Equations
(
Dover
,
New York
,
1956
).
2.
V. I.
Gromak
,
I.
Laine
, and
S.
Shimomura
,
Painlevé Differential Equations in the Complex Plane
,
Studies in Mathematics
Vol.
28
(
De Gruyter
,
Berlin
,
2002
).
3.
J.
Chazy
, “
Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes
,”
Acta Math.
34
,
317
(
1911
).
4.
F.
Bureau
, “
Differential equations with fixed critical points
,”
Ann. Mat. Pura Appl. Ser. 4
64
,
229
(
1964
);
F.
Bureau
,
Ann. Mat. Pura Appl. Ser. 4
66
,
1
(
1964
).
5.
C. M.
Cosgrove
, “
Higher-order Painlevé equations in the polynomial class II: Bureau symbol P1
,”
Stud. Appl. Math.
116
,
321
(
2006
).
6.
C. M.
Cosgrove
, “
Higher-order Painlevé equations in the polynomial class I: Bureau symbol P2
,”
Stud. Appl. Math.
104
,
1
(
2000
).
7.
M. J.
Ablowitz
and
P. A.
Clarkson
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering
,
L. M. S. Lecture Notes in Mathematics
Vol.
149
(
Cambridge University Press
,
Cambridge
,
1991
).
8.
A.
Andrianov
,
F.
Cannata
,
M.
Ioffe
, and
D.
Nishnianidze
, “
Systems with higher-order shape invariance: Spectral and algebraic properties
,”
Phys. Lett. A
266
,
341
(
2000
).
9.
W. I.
Fushchych
and
A. G.
Nikitin
, “
Higher symmetries and exact solutions of linear and nonlinear Schrödinger equation
,”
J. Math. Phys.
38
,
5944
(
1997
).
10.
A. P.
Veselov
and
A. B.
Shabat
, “
Dressing chains and the spectral theory of the Schrödinger operator
,”
Funct. Anal. Appl.
27
,
81
(
1993
).
11.
A. P.
Veselov
, “
On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy
,”
J. Phys. A: Math. Gen.
34
,
3511
(
2001
).
12.
J. M.
Carballo
,
D. J.
Fernández C
,
J.
Negro
, and
L. M.
Nieto
, “
Polynomial Heisenberg algebras
,”
J. Phys. A: Math. Gen.
37
,
10349
(
2004
).
13.
J.
Mateo
and
J.
Negro
, “
Third-order differential ladder operators and supersymmetric quantum mechanics
,”
J. Phys. A: Math. Theor.
41
,
045204
(
2008
).
14.
D.
Bermúdez
and
D. J.
Fernández C
, “
Supersymmetric quantum mechanics and Painlevé IV equation
,”
SIGMA
7
,
025
(
2011
).
15.
D.
Bermúdez
and
D. J.
Fernández C
, “
Non-hermitian Hamiltonians and the Painlevé IV equation with real parameters
,”
Phys. Lett. A
375
,
2974
(
2011
).
16.
D.
Bermúdez
,
A.
Contreras-Astorga
, and
D. J.
Fernández C
, “
Painlevé IV coherent states
,”
Ann. Phys.
350
,
615
(
2014
).
17.
D. J.
Fernández C
and
J. C.
González
, “
Complex oscillator and Painlevé IV equation
,”
Ann. Phys.
359
,
213
(
2015
).
18.
S.
Gravel
, “
Hamiltonians separable in Cartesian coordinates and third-order integrals of motion
,”
J. Math. Phys.
45
,
1003
(
2004
).
19.
I.
Marquette
, “
Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. I. Rational function potentials
,”
J. Math. Phys.
50
,
012101
(
2009
).
20.
I.
Marquette
, “
Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials
,”
J. Math. Phys.
50
,
095202
(
2009
).
21.
I.
Marquette
, “
Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion
,”
J. Math. Phys.
50
,
122102
(
2009
).
22.
I.
Marquette
, “
Superintegrability and higher order polynomial algebras
,”
J. Phys. A: Math. Theor.
43
,
135203
(
2010
).
23.
J. M.
Fellows
and
R. A.
Smith
, “
Factorization solution of a family of quantum nonlinear oscillators
,”
J. Phys. A: Math. Theor.
42
,
335303
(
2009
).
24.
S.
Odake
and
R.
Sasaki
, “
Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials
,”
Phys. Lett. B
702
,
164
(
2011
).
25.
S.
Odake
and
R.
Sasaki
, “
Krein-Adler transformations for shape-invariant potentials and pseudo virtual states
,”
J. Phys. A: Math. Theor.
46
,
245201
(
2013
).
26.
D.
Gómez-Ullate
,
Y.
Grandati
, and
R.
Milson
, “
Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials
,”
J. Phys. A: Math. Theor.
47
,
015203
(
2014
).
27.
D.
Gómez-Ullate
,
Y.
Grandati
, and
R.
Milson
, “
Extended Krein-Adler theorem for the translationally shape invariant potentials
,”
J. Math. Phys.
55
,
043510
(
2014
).
28.
I.
Marquette
and
C.
Quesne
, “
New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials
,”
J. Math. Phys.
54
,
042102
(
2013
).
29.
I.
Marquette
and
C.
Quesne
, “
Two-step rational extensions of the harmonic oscillator: Exceptional orthogonal polynomials and ladder operators
,”
J. Phys. A: Math. Theor.
46
,
155201
(
2013
).
30.
I.
Marquette
and
C.
Quesne
, “
New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems
,”
J. Math. Phys.
54
,
102102
(
2013
).
31.
I.
Marquette
and
C.
Quesne
, “
Combined state-adding and state-deleting approaches to type III multi-step rationally extended potentials: Applications to ladder operators and superintegrability
,”
J. Math. Phys.
55
,
112103
(
2014
).
32.

Throughout the present paper, we use the conventions and notations of Ref. 31, which may be different from those of Refs. 28–30.

33.
M. M.
Crum
, “
Associated Sturm-Liouville systems
,”
Q. J. Math.
6
,
121
(
1955
).
34.
M. G.
Krein
, “
On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials
,”
Dokl. Akad. Nauk SSSR
113
,
970
(
1957
).
35.
V. É.
Adler
, “
On a modification of Crum’s method
,”
Theor. Math. Phys.
101
,
1381
(
1994
).
36.
S.
Post
and
P.
Winternitz
, “
General Nth order integrals of motion in the Euclidean space
,”
J. Phys. A: Math. Theor.
48
,
405201
(
2015
).
37.
D. J.
Fernández C
and
N.
Fernández-García
, “
Higher-order supersymmetric quantum mechanics
,”
AIP Conf. Proc.
744
,
236
(
2004
).
38.
A. A.
Andrianov
,
M. V.
Ioffe
,
F.
Cannata
, and
J.-P.
Dedonder
, “
Second order derivative supersymmetry, q deformations and the scattering problem
,”
Int. J. Mod. Phys. A
10
,
2683
(
1995
).
39.
S.
Fukutani
,
K.
Okamoto
, and
H.
Umemura
, “
Special polynomials and the Hirota bilinear relation of the second and fourth Painlevé equations
,”
Nagoya Math. J.
159
,
179
(
2000
).
40.
K.
Kajiwara
and
Y.
Ohta
, “
Determinant structure of the rational solutions for the Painlevé IV equation
,”
J. Phys. A: Math. Gen.
31
,
2431
(
1998
).
41.
M.
Noumi
and
Y.
Yamada
, “
Symmetries in the fourth Painlevé equation and Okamoto polynomials
,”
Nagoya Math. J.
153
,
53
(
1999
).
42.
P. A.
Clarkson
, “
The fourth Painlevé equation and associated special polynomials
,”
J. Math. Phys.
44
,
5350
(
2003
).
43.
P. A.
Clarkson
, “
Vortices and polynomials
,”
Stud. Appl. Math.
123
,
37
(
2009
).
44.
D.
Gómez-Ullate
,
N.
Kamran
, and
R.
Milson
, “
Two-step Darboux transformations and exceptional Laguerre polynomials
,”
J. Math. Anal. Appl.
387
,
410
(
2012
).
45.
C.
Quesne
, “
Higher-order SUSY, exactly solvable potentials, and exceptional orthogonal polynomials
,”
Mod. Phys. Lett. A
26
,
1843
(
2011
).
46.
C.
Quesne
, “
Rationally-extended radial oscillators and Laguerre exceptional orthogonal polynomials in kth-order SUSYQM
,”
Int. J. Mod. Phys. A
26
,
5337
(
2011
).
47.
Y.
Grandati
, “
Multistep DBT and regular rational extensions of the isotonic oscillator
,”
Ann. Phys.
327
,
2411
(
2012
).
48.
Y.
Grandati
and
C.
Quesne
, “
Disconjugacy, regularity of multi-indexed rationally extended potentials, and Laguerre exceptional polynomials
,”
J. Math. Phys.
54
,
073512
(
2013
).
49.
I.
Marquette
, “
An infinite family of superintegrable systems from higher order ladder operators and supersymmetry
,”
J. Phys. Conf. Ser.
284
,
012047
(
2011
).
50.
P. A.
Clarkson
, “
Special polynomials associated with rational solutions of the fifth Painlevé equation
,”
J. Comput. Appl. Math.
178
,
111
(
2005
).
You do not currently have access to this content.