We extend the result on the symmetry of quantum torus by Rieffel and Schwarz to the symmetry of quantum supertorus. The symmetry group is extended from O(n, n, ℤ) to OSp(n, n|2m, ℤ).
REFERENCES
1.
N.
Berkovits
and J.
Maldacena
, “Fermionic T-duality, dual superconformal symmetry, and the amplitude/Wilson loop connection
,” J. High Energy Phys.
2008
, 62
.2.
3.
A.
Connes
, M. R.
Douglas
, and A.
Schwarz
, “Noncommutative geometry and matrix theory: Compactification on tori
,” J. High Energy Phys.
1998
, 3
.4.
5.
C.
Ee
, H.
Kim
, and H.
Nakajima
, “Noncommutative superspace and super Heisenberg group
,” J. High Energy Phys.
2008
, 4
.6.
C.
Ee
, H.
Kim
, and H.
Nakajima
, “Noncommutative supertori in two dimensions
,” J. High Energy Phys.
2008
, 58
.7.
E.
Chang-Young
, H.
Kim
, and H.
Nakajima
, “Morita equivalence of noncommutative supertori
,” J. Math. Phys.
51
, 063520
(2010
).8.
G. A.
Elliott
, “On the K-theory of the C∗-algebras generated by a projective representation of a torsion-free discrete abelian group
,” in Operator Algebras and Group Representations
(Pitman
, London
, 1984
), pp. 157
–184
.9.
M. B.
Green
, J. H.
Schwarz
, and E.
Witten
, Superstring Theory Vol. 1 and 2
(Cambridge University Press
, Cambridge
, 1987
).10.
11.
D.
Mumford
, in Tata Lectures on Theta III
, edited by M.
Nori
and P.
Norman
(Birkhäuser
, Basel-Boston
, 1991
).12.
J.
Polchinski
, String Theory Vol. 1 and 2
(Cambridge University Press
, Cambridge
, 1998
).13.
D.
Quillen
, “Superconnections and the Chern character
,” Topology
24
(1
), 89
–95
(1985
).14.
M.
Rieffel
, “Projective modules over higher dimensional noncommutative tori
,” Can. J. Math.
40
(2
), 257
–338
(1988
).15.
M. A.
Rieffel
and A.
Schwarz
, “Morita equivalence of multidimensional noncommutative tori
,” Int. J. Math.
10
, 289
(1999
).16.
A.
Schwarz
, “Morita equivalence and duality
,” Nucl. Phys. B
534
, 720
–738
(1998
).17.
A.
Schwarz
, “Theta functions on non-commutative tori
,” Lett. Math. Phys.
58
, 81
–90
(2001
).18.
N.
Seiberg
, “Noncommutative superspace,N = 1/2 supersymmetry, field theory and string theory
,” J. High Energy Phys.
2003
(6
), 10
;N.
Berkovits
and N.
Seiberg
, “Superstrings in graviphoton background and N = 1/2 + 3/2 supersymmetry
,” J. High Energy Phys.
2003
(7
), 10
.19.
S.
Thangavelu
, Harmonic Analysis on the Heisenberg Group
(Birkhäuser
, Boston
, 1998
).© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.