We extend the result on the symmetry of quantum torus by Rieffel and Schwarz to the symmetry of quantum supertorus. The symmetry group is extended from O(n, n, ℤ) to OSp(n, n|2m, ℤ).

1.
N.
Berkovits
and
J.
Maldacena
, “
Fermionic T-duality, dual superconformal symmetry, and the amplitude/Wilson loop connection
,”
J. High Energy Phys.
2008
,
62
.
2.
A.
Connes
,
Nonocommutative Geometry
(
Academic Press
,
1994
).
3.
A.
Connes
,
M. R.
Douglas
, and
A.
Schwarz
, “
Noncommutative geometry and matrix theory: Compactification on tori
,”
J. High Energy Phys.
1998
,
3
.
4.
B.
DeWitt
,
Supermanifolds
(
Cambridge University Press
,
Cambridge
,
1984
).
5.
C.
Ee
,
H.
Kim
, and
H.
Nakajima
, “
Noncommutative superspace and super Heisenberg group
,”
J. High Energy Phys.
2008
,
4
.
6.
C.
Ee
,
H.
Kim
, and
H.
Nakajima
, “
Noncommutative supertori in two dimensions
,”
J. High Energy Phys.
2008
,
58
.
7.
E.
Chang-Young
,
H.
Kim
, and
H.
Nakajima
, “
Morita equivalence of noncommutative supertori
,”
J. Math. Phys.
51
,
063520
(
2010
).
8.
G. A.
Elliott
, “
On the K-theory of the C-algebras generated by a projective representation of a torsion-free discrete abelian group
,” in
Operator Algebras and Group Representations
(
Pitman
,
London
,
1984
), pp.
157
184
.
9.
M. B.
Green
,
J. H.
Schwarz
, and
E.
Witten
,
Superstring Theory Vol. 1 and 2
(
Cambridge University Press
,
Cambridge
,
1987
).
10.
Y.
Manin
,
Gauge Field Theory and Complex Geometry
(
Springer-Verlag
,
New York
,
1980
).
11.
D.
Mumford
, in
Tata Lectures on Theta III
, edited by
M.
Nori
and
P.
Norman
(
Birkhäuser
,
Basel-Boston
,
1991
).
12.
J.
Polchinski
,
String Theory Vol. 1 and 2
(
Cambridge University Press
,
Cambridge
,
1998
).
13.
D.
Quillen
, “
Superconnections and the Chern character
,”
Topology
24
(
1
),
89
95
(
1985
).
14.
M.
Rieffel
, “
Projective modules over higher dimensional noncommutative tori
,”
Can. J. Math.
40
(
2
),
257
338
(
1988
).
15.
M. A.
Rieffel
and
A.
Schwarz
, “
Morita equivalence of multidimensional noncommutative tori
,”
Int. J. Math.
10
,
289
(
1999
).
16.
A.
Schwarz
, “
Morita equivalence and duality
,”
Nucl. Phys. B
534
,
720
738
(
1998
).
17.
A.
Schwarz
, “
Theta functions on non-commutative tori
,”
Lett. Math. Phys.
58
,
81
90
(
2001
).
18.
N.
Seiberg
, “
Noncommutative superspace,N = 1/2 supersymmetry, field theory and string theory
,”
J. High Energy Phys.
2003
(
6
),
10
;
N.
Berkovits
and
N.
Seiberg
, “
Superstrings in graviphoton background and N = 1/2 + 3/2 supersymmetry
,”
J. High Energy Phys.
2003
(
7
),
10
.
19.
S.
Thangavelu
,
Harmonic Analysis on the Heisenberg Group
(
Birkhäuser
,
Boston
,
1998
).
You do not currently have access to this content.